
© May 2024 | IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164363 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1404

Streamlining Hotel Booking Experiences

JAKKUVA KARTHIK KUMAR PATNAIK1, MARIPI PUJITHA2, Y. DINESH KUMAR3, R.

SWETHA4, JAMI BHARGAVI5, MARIPI HEAMTH6, BADRI USHA7
1, 2, 5, 6, 7BTech Students, Department of Computer Science and Engineering, Satya Institute of Technology

and Management, Gajularega, Vizianagaram, Andhra Pradesh, India.
3Associate Professor, Department of Computer Science and Engineering, Satya Institute of Technology

and Management, Gajularega, Vizianagaram, Andhra Pradesh, India.
4Assistant Professor, Department of Computer Science and Engineering, Satya Institute of Technology

and Management, Gajularega, Vizianagaram, Andhra Pradesh, India.

Abstract— The abstract introduces a project aiming to

develop a comprehensive Hotel Booking App to meet the

increasing demand for seamless and user-friendly hotel

reservation systems. Leveraging the MERN Stack, the

project focuses on user interface development for

customers and an intuitive admin dashboard for hotel

administrators. Key features include user authentication,

real-time room availability updates, and secure payment

processing. The iterative development approach prioritizes

backend establishment using Node.js and Express.js,

MongoDB for database management, and React for

frontend design. Integration with external APIs and

rigorous testing ensures functionality and security.

Deployment via platforms like Heroku or AWS aims to

reach a broad audience, with ongoing feedback driving

continuous improvement.

Index Terms— Hotel Booking Application, Iterative

Development, MERN Stack, Secure Payment Processing

I. INTRODUCTION

In dynamic world of web development, mastering full

stack technologies is essential for building robust and

feature the -rich applications. One exciting project that

showcases the power of full stack development is a

Hotel Booking App built using the MERN Stack –

MongoDB, Express.js, React.js, and Node.js. This

project not only demonstrates proficiency in these

cutting-edge technologies but also provides a practical

application scenario that many businesses can benefit

from.

In this guide, we'll embark on a journey to create a

Hotel Booking App from scratch, covering every

aspect of development, from setting up the

development environment to deploying the application

to a live server. Whether you're a seasoned developer

looking to expand your skill set or a beginner eager to

dive into the world of full stack development, this

project will provide valuable insights and hands-on

experience.

II. LITARATURE REVIEW

The MERN stack has emerged as a powerful solution

for building web applications, leveraging the

capabilities of four key technologies: MongoDB,

Express.js, React.js, and Node.js. This literature

review aims to explore the significance and

applications of each component within the MERN

stack, as well as related technologies commonly used

in web development.

MERN Stack: The MERN stack represents a cohesive

ecosystem that enables developers to build scalable

and efficient web applications entirely using

JavaScript. By integrating MongoDB's flexibility with

Express.js' simplicity, React.js' reactivity, and

Node.js's event-driven architecture, developers can

create dynamic and responsive applications with ease

(Yao et al., 2020).

III. METHODOLOGY

Setting up the backend involves connecting Node.js

with MongoDB using Mongoose for data

management. Express.js facilitates server creation,

route handling, and middleware integration, including

JWT for secure authentication.

For the frontend, React.js is employed with essential

packages like react-router-dom and axios for routing

and HTTP requests. Components are designed for

various application sections, and state management is

ensured through React Hooks or Redux.

© May 2024 | IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164363 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1405

Integration ties both ends together, configuring a

proxy for API requests and establishing endpoints in

Express.js. Frontend components communicate with

the backend using axios or the fetch API, ensuring

smooth data exchange.

IV. IMPLEMENTATION

Prerequisites: Before beginning implementation,

ensure you have:

• Basic JavaScript, HTML, and CSS knowledge.

• Node.js and npm installed.

• MongoDB installed locally or access to MongoDB

Atlas.

• A code editor like Visual Studio Code.

• Understanding of RESTful API concepts.

Backend Implementation:

MongoDB Database Setup:

• Install MongoDB locally or use MongoDB Atlas.

• Create a database for the application.

• Define collections and schemas for efficient data

organization.

Express.js Server Backend Setup:

• Start a new Node.js project with npm or yarn.

• Install Express.js and necessary middleware.

• Configure Express.js to handle HTTP requests.

• Implement middleware for logging, errors, and

authentication.

User Authentication and Authorization:

• Implement authentication using JWT.

• Establish user roles and permissions.

• Ensure secure authentication and authorization.

Database Schema and Models:

• Define Mongoose schemas and models.

• Establish relationships between models.

Express.js Routes and Controllers:

• Create routes and controllers for CRUD

operations.

• Implement middleware for validation and

authentication.

• Test API endpoints with tools like Postman.

Frontend Implementation:

React.js Frontend Setup:

• Initialize a React.js project.

• Install dependencies like react-router-dom and

axios.

• Create components for different application

sections.

React Components and UI Design:

• Design UI using components and UI frameworks.

• Develop reusable UI components.

• Ensure responsiveness across devices.

API Integration and Data Management:

• Integrate frontend with backend using axios.

• Implement functions for data manipulation.

• Manage state using React Hooks or Redux.

Routing and State Management:

• Configure client-side routing with react-router-

dom.

• Define routes and handle parameters.

• Efficiently manage application state.

V. API’S USED AND WORKING

Hotel Booking API:

This type of API allows your app to connect with

external hotel booking platforms or services to fetch

hotel listings, availability, and pricing information.

Examples of such APIs include Expedia API,

Booking.com API, or Airbnb API.

Payment Gateway API:

To facilitate secure online payments, you'll need to

integrate with a payment gateway API. This API will

handle payment processing and communication with

payment providers. Popular payment gateway APIs

include PayPal, Stripe, and Braintree.

Maps and Location API:

Implementing a maps and location API will enable

you to display hotels on a map, show nearby

attractions, and calculate distances from the user's

current location. Google Maps API and Mapbox API

are widely used for this purpose.

User Authentication API:

An authentication API allows users to register and log

in to your app securely. You can use services like

© May 2024 | IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164363 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1406

OAuth or Firebase Authentication to handle user

authentication.

Review and Rating API:

If you plan to include user reviews and ratings for

hotels, you might integrate an API that allows users to

submit and retrieve reviews. Custom1)built APIs or

third1)party services like Trustpilot or TripAdvisor

APIs can be used for this functionality.

VI. DATABASE DESIGN & SECURITY

Database Design:

In the proposed system, MongoDB is utilized as the

primary database, organized into collections that

store various types of data related to hotel bookings

and user profiles. The design involves defining

schemas using Mongoose, which provides a

structured representation of data and ensures

consistency and integrity. Here's an overview of the

database design:

User Collection:

• Stores user profiles and authentication

credentials.

• Fields may include username, email, hashed

password, role (e.g., customer, admin), and

any additional profile information.

• Mongoose schema defines the structure and

validations for user data.

Room Collection:

• Contains information about available rooms,

such as room type, capacity, amenities, and

pricing.

Additional fields may include availability status,

booking history, and images.

• Mongoose schema specifies the room

properties and data validations.

Hotel Collection:

• Fields may include hotel name, location,

address, contact information, amenities, and

description.

Additional fields can be added to store images,

ratings, reviews, and pricing information.

• Mongoose schema specifies the hotel

properties and data validations.

Security:

Security is a crucial aspect of the system,

particularly concerning user authentication and

password protection.

JWT (JSON Web Tokens):

• JWT is used for authentication and

authorization purposes.

• Upon successful login, the server generates

a JWT containing user information and

sends it to the client.

© May 2024 | IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164363 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1407

• The client includes the JWT in subsequent

requests, allowing the server to

authenticate and authorize the user based

on the token's validity and content.

Bcrypt.js:

• Bcrypt.js is employed for securely hashing

and salting user passwords before storing

them in the database.

• During user registration or password

updates, Bcrypt.js generates a hash of the

password, making it computationally

expensive for attackers to reverse-engineer

the original password.

• This ensures that even if the database is

compromised, passwords remain protected

from unauthorized access.

VII. PACKAGES & MODULES

MODULES

BACKEND:

Dotenv: Used to load environment variables from a

.env file into process.env, facilitating configuration

management in Node.js applications.

Cors: Enables Cross-Origin Resource Sharing

(CORS) in the backend server, allowing the frontend

to make requests to the backend from a different

origin.

Bcryptjs: A library for hashing passwords with bcrypt

encryption, enhancing security by protecting user

credentials stored in the database.

Cookie-parser: Middleware for parsing cookies

attached to incoming HTTP requests, useful for

handling session and authentication data stored in

cookies.

Jsonwebtoken: Used for generating and verifying

JSON Web Tokens (JWT) for user authentication and

authorization, providing a secure method for

managing user sessions.

Nodemon: A development tool that automatically

restarts the Node.js server when changes are detected

in the source code, improving the development

workflow.

DATABASE:

Mongoose Schema: Mongoose is an Object Data

Modeling (ODM) library for MongoDB and Node.js,

and Mongoose Schema is used to define the structure

of MongoDB documents within a collection.

MongoDB: A NoSQL document database that stores

data in JSON-like documents, providing scalability,

flexibility, and high performance for data storage and

retrieval.

Uri: A module used to construct MongoDB

connection URIs, allowing the Node.js application to

connect to the MongoDB database.

FRONTEND:

Axios: A promise-based HTTP client for making

asynchronous HTTP requests from the frontend to the

backend API endpoints, simplifying data fetching

and manipulation.

React: A JavaScript library for building user

interfaces, providing a component-based architecture

for creating reusable UI components in the frontend.

React-date-range: A date range picker component for

React.js applications, facilitating the selection of date

ranges in forms and user interfaces.

React-dom: A package that provides DOM-specific

methods for React.js applications, enabling rendering

of React components into the DOM (Document

Object Model).

React-router-dom: A routing library for React.js

applications, allowing navigation between different

views and pages within a single-page application

(SPA).

React-scripts: A set of scripts and configurations used

by Create React App for bootstrapping React.js

projects, providing build, test, and development tools

out of the box.

Svg-icons: A collection of SVG icons for use in

React.js applications, enhancing the visual design and

user experience of the frontend interface.

PACKAGES

Packages Used:

© May 2024 | IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164363 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1408

• .gitignore

• Pacage-lock.json

• Package.json

• Readme.md

• Yarn.lock

• Node_modules

• .gitignore: Crucial for Git version control, it

specifies files and directories to ignore when

committing changes. Typically excludes build

artifacts, logs, sensitive configuration files (like

API keys), and dependencies.

• package-lock.json: Automatically generated by

npm, it records exact dependency versions to

ensure consistency across team members and

downloads. Prevents compatibility issues.

• package.json: Core to Node.js projects, it

contains metadata like project name, version,

and dependencies. Developers use it to manage

settings and specify required dependencies.

• README.md: Main project documentation in

Markdown format, visible on platforms like

GitHub. Includes project description, installation

instructions, configuration details, and often

visual aids.

• yarn.lock: Like package-lock.json but for Yarn

package manager, it locks down dependency

versions for deterministic builds. Guarantees

consistent dependency sets.

• node_modules: Directory housing installed

project dependencies. Generated by npm or

Yarn, it's typically large and not version-

controlled, as it can be recreated from package-

lock.json or yarn.lock.

APPENDIX

The source code for the Hotel Booking App

implementation using the MERN stack can be found in

the following repositories:

• Full Repository: [karthikjakkuva4/Hotel-Booking-

App: "Hotel Booking App: An open-source solution

for hassle-free hotel reservations." (github.com)]

• Backend (Server): [Hotel-Booking-App/Server at

main · karthikjakkuva4/Hotel-Booking-App

(github.com)].

Frontend (Client): [Hotel-Booking-App/client at main ·

karthikjakkuva4/Hotel-Booking-App (github.com)].

ACKNOWLEDGMENT

We take this opportunity to express our gratitude to

those who have been instrumental in the successful

completion of the Final Year Major Project.

We would like to thank Dr. M. SASHI BHUSHAN

RAO, Director of SITAM, for encouraging us to

pursue this Project in our College. His support and

motivation made us enthusiastic while progressing

in the project to gain knowledge. We are extremely

thankful for his support despite his busy schedule

managing corporate affairs.

We extend our sincere thanks to Dr. D. V. RAMA

MURTHY, Principal, SITAM, whose cooperation in

issuing necessary permissions from relevant

organizations was instrumental in our project's

progress.

We are also grateful to express our deepest sense of

gratitude to Dr. G. VENU MADHAVA RAO,

Professor, Head of the Department of Computer

Science and Engineering, for his encouragement and

guidance throughout our project journey.

It is with profound gratitude that we express our

deep indebtedness to our guide Mr. Y. DINESH

KUMAR, MTech, (Ph.D), Associate Professor,

Department of Computer Science and Engineering,

for his valuable advice and technical support

throughout our project work. We consider ourselves

greatly honoured to have obtained a chance of

working under him.

We express our gratitude to all the External Mentors

of the Concerned Departments outside the College

Campus, whose support and cooperation were

incredible during this Final Project Work.

Finally, we are extremely thankful to our parents and

friends for their constant help and moral support.

© May 2024 | IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164363 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1409

OUTPUTS & SCREENSHOTS

CONCLUSION

In conclusion, the Hotel Booking App project has been

successfully developed using the MERN stack,

showcasing the integration of various technologies to

create a full-stack web application. Throughout the

project, we utilized HTML, CSS, JavaScript, Node.js,

Express.js, MongoDB, and other related technologies

to implement features such as user authentication,

hotel listings, room booking, and more.

The project demonstrates the capabilities of modern

web development technologies and serves as a

practical example of building a robust and scalable

web application from scratch. By utilizing the MERN

stack, we were able to achieve a seamless integration

between the frontend and backend components,

resulting in a smooth user experience.

REFERENCES

[1] Banks, A. (2017). Learning React: A Hands-On

Guide to Building Web Applications Using

React and Redux. Addison-Wesley Professional.

[2] Bachmann, P. (2015). MongoDB Applied

Design Patterns. Packt Publishing.

[3] Duran, A. (2020). Tailwind CSS: From Zero to

Production. Leanpub.

[4] Fielding, R. T. (2000). Architectural Styles and

the Design of Network-based Software

Architectures. University of California, Irvine.

[5] Flanagan, D. (2011). JavaScript: The Definitive

Guide. O'Reilly Media.

[6] Horton, R. (2014). Express.js Deep API

Reference. Apress.

[7] Hughes-Croucher, T., & Wilson, M. (2010).

Node: Up and Running: Scalable Server-Side

Code with JavaScript. O'Reilly Media.

[8] Jones, M., & Hardt, D. (2015). The OAuth 2.0

Authorization Framework: JWT Bearer Token

Profiles. IETF.

[9] Rauch, G. (2014). Mongoose for Application

Development. Packt Publishing.

[10] Shukla, S., & Gupta, P. (2017). A Study of

CRUD Operations in Web Applications.

International Journal of Computer Applications,

158(5).

[11] Yao, S., Nix, A., & Sykes, L. (2020). MERN

Quick Start Guide: Build Web Applications with

MongoDB, Express.js, React, and Node. Packt

Publishing.

