
© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164483 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1018

Android Malware Detection Using Genetic Algorithm

Mr. Mukesh Gilda1, Yeturu Sai Praneeth Reddy2, Gurrala Shashi Kumar3, Penmatsa Shivaram Sandeep

Varma4

1Asst. Professor, Sphoorthy Engineering College
2,3Dept of Computer Science and Engineering, Sphoorthy Engineering College

4Department of Cyber Security (CSE) Sphoorthy Engineering College, Hyderabad, India

Abstract- This study presents an innovative approach for

enhancing Android malware detection through a Genetic

Algorithm (GA)-based optimized feature selection coupled

with machine learning techniques. Leveraging the

evolutionary principles of GA, the proposed method

effectively identifies a subset of features from a large pool,

maximizing the discriminative power while minimizing

computational complexity. By integrating this feature

selection mechanism with machine learning classifiers, the

system achieves superior performance in distinguishing

between, benign and malicious Android applications.

Through extensive experimentation and evaluation using

real-world datasets, the effectiveness of the proposed

framework is demonstrated, showcasing significant

improvements in detection accuracy, scalability, and

efficiency compared to traditional methods. This research

contributes to the advancement of Android security,

offering a robust and adaptable solution for combating

evolving malware threats in mobile ecosystems.

Keywords— Genetic Algorithm, Machine Learning, Android

Malware, Feature Selection Mechanism, Accuracy.

1. INTRODUCTION

Android applications are widely available on Google

Play Store and other platforms, but their open-source

nature and popularity have made them a prime target for

malware developers. Despite Google’s efforts to protect

users, malicious apps still manage to slip through and

compromise personal information, such as contacts,

emails, and GPS data, for nefarious purposes.

To combat this, malware analysis, which comes in two

main forms- static and dynamic – is essential. Static

analysis involves examining the code structure without

execution, while of benign and malicious samples. This

paradigm shift from static, rule-based detection to

dynamic, data-driven approaches has significantly

enhanced the efficacy and adaptability of Android

malware detection systems.

A. The objective of this project is to develop a robust and

efficient Android malware detection system utilizing

state-of-the-art machine learning algorithms. By

harnessing the power of ML, we aim to create a

solution capable of accurately identifying malicious

behavior in Android applications while minimizing

false positives. This project not only contributes to the

advancement of Android security research but also

addresses the pressing need for innovative solutions

to combat the escalating threat of Android malware.

B. In this introduction, we provide an overview of the

challenges posed by Android malware, the limitations

of existing detection methods, and the rationale

behind leveraging machine learning for malware

detection. Subsequently, we outline the goals and

objectives of this project, highlighting its significance

in the context of contemporary cybersecurity threats.

Throughout the remainder of this document, we will

delve deeper into the methodologies, experiments,

and results that underpin our approach to Android

malware detection using machine learning.

2. OBJECTIVE

The primary objective of this project is to develop an

effective Android malware detection system using

machine learning techniques. Specifically, the goals

include:

1. Designing and implementing feature extraction

mechanisms to capture relevant characteristics of

Android applications.

2. Training machine learning models on labeled datasets

of benign and malicious applications to learn patterns

indicative of malware behavior.

3. Evaluating the performance of the detection system

through rigorous testing and validation, focusing on

accuracy, precision, recall, and false positive rates.

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164483 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1019

4. Enhancing the scalability and efficiency of the

detection system to handle large volumes of Android

applications in real-time.

5. Contributing to the advancement of Android security

research by providing an innovative and adaptive

approach to malware detection, capable of addressing

evolving threats.

3. VARIOUS TECHINQUES TO INSERT

MALWARE

Inserting malware into Android applications involves

various techniques aimed at concealing malicious

behavior while maintaining the functionality and

appearance of legitimate apps. Some common

techniques include:

1. Code Injection: Malicious code can be injected into

legitimate Android applications, either statically or

dynamically, to add malicious functionalities while

retaining the original functionality of the app.

2. Steganography: Malware authors may embed

malicious code within image or audio files, using

steganography techniques to conceal the presence of

the payload. Once the app is installed, the hidden

code can be extracted and executed.

3. Dynamic Code Loading: Malware can dynamically

load additional code from remote servers after

installation. This allows attackers to modify the

behavior of the app post-installation, making it

challenging to detect malicious activities during

static analysis.

4. Reflection: Malware can use Java reflection to

dynamically invoke methods and access resources,

enabling it to bypass static analysis checks that rely

on straightforward code execution paths.

5. Encryption and Obfuscation: Malicious code can be

encrypted or obfuscated to evade static analysis

techniques. Decrypting and deobfuscating the code

dynamically at runtime allows the malware to

execute its malicious behavior without detection.

6. Exploiting Native Code: Malware authors may

leverage native code libraries (e.g., using the

Android Native Development Kit - NDK) to execute

malicious code directly in native languages like

C/C++, bypassing some of the security mechanisms

enforced by the Android Runtime (ART) or Java

Virtual Machine (JVM).

7. Packers and Protectors: Malware can be packed or

protected using commercial or custom packers to

obfuscate the code and make static analysis more

difficult. These packers compress, encrypt, or

modify the executable file, requiring unpacking or

decryption at runtime.

8. Permission Abuse: Malicious apps may request

excessive permissions during installation,

exploiting users' trust in legitimate apps. This allows

the malware to access sensitive data or perform

unauthorized actions without raising suspicion.

4. LITERATURE REVIEW

1. Android Malware Detection Techniques:

A Review, by Sherly Elizabeth and Dr.P. Sheik Abdul

Khader (International Journal of Computer Applications,

2015): This paper provides an extensive review of

various techniques and methodologies employed for

Android malware detection. It covers both traditional

signature-based methods and emerging approaches based

on machine learning and behavioural analysis.

2. A Survey of Machine Learning Techniques for

Android Malware Detection by Arpita Gandhi and

Hemant Patel (International Journal of Computer

Applications, 2016):

This survey paper explores the application of machine

learning techniques for Android malware detection. It

categorizes different ML algorithms used in existing

research and evaluates their effectiveness in detecting

Android malware based on features extracted from

applications.

3. Android Malware Detection Using Machine

Learning Algorithms:

A Review, by S. Sharmeela and Dr. P. Sheik Abdul

Khader (International Journal of Computer Applications,

2016) : Focusing specifically on machine learning-based

approaches, this review paper examines the use of various

ML algorithms for Android malware detection. It

discusses the strengths and limitations of different

algorithms and provides insights into future research

directions.

4. A Review of Machine Learning Approaches to

Android Malware Detection"** by Shashikant

Patil and Dr. Suryakanth Biradar (International

Journal of Engineering Research and Applications,

2017):

This paper provides a comprehensive review of machine

learning techniques applied to Android malware

detection. It discusses feature selection methods, dataset

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164483 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1020

construction, and the performance evaluation of ML

models in detecting Android malware.

5. A Survey of Machine Learning Techniques for

Android Malware Detection"** by Amir R.

Sharafaldin, Arash Habibi Lashkari, and Ali A.

Ghorbani (IEEE Communications Surveys &

Tutorials, 2018):

This survey article offers an in-depth analysis of machine

learning approaches for Android malware detection. It

covers various aspects such as feature selection, dataset

construction, and the comparative evaluation of different

ML algorithms.

6. Machine Learning-Based Android Malware

Detection:

A Survey by Salih Abdulrahman Saleh, Muneera

Alshammari, and Mohammed Khalid (IEEE Access,

2019): Focusing on recent advancements, this survey

paper provides insights into the application of machine

learning for Android malware detection. It discusses the

challenges posed by evolving malware threats and

explores potential solutions offered by ML techniques.

 5. EXISTING SYSTEMS

The primary achievement of this research is the

significant reduction of feature dimensions to less than

half of the original set using Genetic Algorithms. This

reduction allows for inputting into machine learning

classifiers, simplifying the training process while

retaining accuracy in classifying malware. Unlike

exhaustive methods, which require testing numerous

combinations, Genetic Algorithms employ a heuristic

approach based on fitness functions for feature selection.

The optimized feature set obtained through this method

is then utilized to train Support Vector Machine and

Neural Network algorithms. Remarkably, a

classification accuracy exceeding 79% is maintained

despite the reduced feature dimensionality, effectively

lowering the training complexity of the classifiers.

6. PROPOSED SYSTEM

The proposed system aims to enhance Android malware

detection using machine learning techniques, specifically

Support Vector Machines (SVM). The primary focus is

on improving the accuracy and efficiency of malware

detection by utilizing a more data-driven and adaptive

approach.

7. SYSTEM ARCHITECHTURE

A web server has been developed to handle various

functions related to Android malware detection. The

server is designed to accept all information related to

malware detection, accessing and processing data from a

web database. Users can log in to the system, where

service providers can train and test data sets, and view the

accuracy of their trained and tested models through bar

charts and detailed results. Additionally, users can view

predicted Android malware detection details, including

detection ratios, and download predicted datasets for

further analysis. The system allows remote users to

register, log in, predict Android malware types, and view

their profiles, ensuring a comprehensive and user-

friendly experience for all.

Figure 1: Architecture diagram

8. USE CASE DIAGRAM

A use case diagram in the Unified Modelling Language

(UML) is a type of behavioural diagram defined by and

created from a Use-case analysis. Its purpose is to present

a graphical overview of the functionality provided by a

system in terms of actors, their goals (represented as use

cases), and any dependencies between those use cases.

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164483 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1021

The main purpose of a use case diagram is to show what

system functions are performed for which actor. Roles of

the actors in the system can be depicted.

Figure 2: Use Case Diagram

9. CLASS DIAGRAM

In software engineering, a class diagram in the Unified

Modelling Language (UML) is a type of static structure

diagram that describes the structure of a system by

showing the system's classes, their attributes, operations

(or methods), and the relationships among the classes. It

explains which class contains information.

Figure 3. Class Diagram

10 . SEQUENCE DIAGRAM

11. METHODOLOGY

Modules

a. Service Provider

In this module, the Service Provider has to login by using

valid user name and password. After login successful he

can do some operations such as Train and Test Data Sets,

View Trained and Tested Accuracy in Bar Chart, View

Trained and Tested Accuracy Results, View Predicted

Android Malware Detection Details, Find Predicted

Android Malware Detection Ratio, Download Predicted

Datasets, View Android Malware Predicted Ratio

Results, View All Remote Users.

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164483 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1022

View and Authorize Users

In this module, the admin can view the list of users who

all registered. In this, the admin can view the user’s

details such as, user name, email, address and admin

authorize the users.

Remote User

In this module, there are n numbers of users are present.

User should register before doing any operations. Once

user registers, their details will be stored to the database.

After registration successful, he has to login by using

authorized user name and password. Once Login is

successful user will do some operations like REGISTER

AND LOGIN, PREDICT ANDROID MALWARE

TYPE, VIEW YOUR PROFILE.

12. EVALUATION

a) Algorithms: -

i. Decision Tree: -

Decision tree classifiers are used successfully in many

diverse areas. Their most important feature is the

capability of capturing descriptive decision-making

knowledge from the supplied data. Decision tree can be

generated from training sets. The procedure for such

generation based on the set of objects (S), each

belonging to one of the classes C1, C2, …, Ck is as

follows:

Step 1. If all the objects in S belong to the same class, for

example Ci, the decision tree for S consists of a leaf

labelled with this class

Step 2. Otherwise, let T be some test with possible

outcomes O1, O2, On. Each object in S has one outcome

for T so the test partitions S into subsets S1, S2, Sn where

each object in Si has outcome Oi for T. T becomes the

root of the decision tree and for each outcome Oi, we

build a subsidiary decision tree by invoking the same

procedure recursively on the set Si.

ii. SVM: -

In classification tasks a discriminant machine learning

technique aims at finding, based on an independent and

identically distributed (iid) training dataset, a

discriminant function that can correctly predict labels for

newly acquired instances. Unlike generative machine

learning approaches, which require computations of

conditional probability distributions, a discriminant

classification function takes a data point x and assigns it

to one of the different classes that are a part of the

classification task. Less powerful than generative

approaches, which are mostly used when prediction

involves outlier detection, discriminant approaches

require fewer computational resources and less training

data, especially for a multidimensional feature space and

when only posterior probabilities are needed. From a

geometric perspective, learning a classifier is equivalent

to finding the equation for a multidimensional surface

that best separates the different classes in the feature

space.

SVM is a discriminant technique, and, because it solves

the convex optimization problem analytically, it always

returns the same optimal hyperplane parameter—in

contrast to genetic algorithms (GAs) or perceptron’s,

both of which are widely used for classification in

machine learning. For perceptron’s, solutions are highly

dependent on the initialization and termination criteria.

For a specific kernel that transforms the data from the

input space to the feature space, training returns uniquely

defined SVM model parameters for a given training set,

whereas the perceptron and GA classifier models are

different each time training is initialized. The aim of GAs

and perceptron’s is only to minimize error during

training, which will translate into several hyperplanes’

meeting this requirement.

iii. Logistic Regression Classifiers: -

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164483 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1023

Logistic regression analysis studies the association

between a categorical dependent variable and a set of

independent (explanatory) variables. The name logistic

regression is used when the dependent variable has only

two values, such as 0 and 1 or Yes and No. The name

multinomial logistic regression is usually reserved for

the case when the dependent variable has three or more

unique values, such as Married, Single, Divorced, or

Widowed. Although the type of data used for the

dependent variable is different from that of multiple

regression, the practical use of the procedure is similar.

Logistic regression competes with discriminant analysis

as a method for analyzing categorical-response

variables. Many statisticians feel that logistic regression

is more versatile and better suited for modeling most

situations than is discriminant analysis. This is because

logistic regression does not assume that the independent

variables are normally distributed, as discriminant

analysis does.

This program computes binary logistic regression and

multinomial logistic regression on both numeric and

categorical independent variables. It reports on the

regression equation as well as the goodness of fit, odds

ratios, confidence limits, likelihood, and deviance. It

performs a comprehensive residual analysis including

diagnostic residual reports and plots. It can perform an

independent variable subset selection search, looking for

the best regression model with the fewest independent

variables. It provides confidence intervals on predicted

values and provides ROC curves to help determine the

best cutoff point for classification. It allows you to

validate your results by automatically classifying rows

that are not used during the analysis.

12.RESULT

The overall outcomes of the Malware detection system

on Android platform using Genetic Algorithm method

with other models. The outcomes identified that the NB

approach has poor performance, whereas the

AdaBoostM1 model gains slightly enhanced results.

Along with that, the Machine Learning models

accomplish moderately closer performance. However,

the AAMD-OELAC technique offers better results with

increased accu_y of 98.93%, prec_n of 99.15%, reca_l

of 98.93%, and F_score of 99.04%. Finally, the

computational time (CT) analysis of the Malware

detection system on Android platform using Genetic

Algorithm technique is compared with recent

approaches in Table 4. The outcomes exhibited that the

Malware detection system on Android platform using

Genetic Algorithm technique reaches the least CT value

of 8s. At the same time, the existing models have reached

increased CT values. These results highlighted that the

Malware detection system on Android platform using

Genetic Algorithm technique shows maximum

performance over other models on malware

classification.

13. REFERENCE

[1] H. Rathore, A. Nandanwar, S. K. Sahay, and M.

Sewak, ‘‘Adversarial superiority in Android malware

detection: Lessons from reinforcement learning based

evasion attacks and defenses,’’ Forensic Sci. Int., Digit.

Invest., vol. 44, Mar. 2023, Art. no. 301511.

[2] H. Wang, W. Zhang, and H. He, ‘‘You are what the

permissions told me! Android malware detection based

on hybrid tactics,’’ J. Inf. Secur. Appl., vol. 66, May

2022, Art. no. 103159.

[3] A. Taha and O. Barukab, ‘‘Android malware

classification using optimized ensemble learning based

on genetic algorithms,’’ Sustainability, vol. 14, no. 21, p.

14406, Nov. 2022.

[4] O. N. Elayan and A. M. Mustafa, ‘‘Android malware

detection using deep learning,’’ Proc. Comput. Sci., vol.

184, pp. 847–852, Jan. 2021.

[5] J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi,

‘‘MAPAS: A practical deep learning-based Android

malware detection system,’’ Int. J. Inf. Secur. Vol. 21,

no. 4, pp. 725–738, Aug. 2022.

