
© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164820 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2215

Symptom Checker Chatbot

Sakshi Rai1, Ujawal Rai2, Dr. Nitin Janwe3, Prof Sharda Dabhekar4

1,2Department of Computer Science and Engineering, Rajiv Gandhi College of Engineering Research And

Technology, Chandrapur, India
3H.O.D, Department of Computer Science and Engineering, Rajiv Gandhi College of Engineering

Research And Technology, Chandrapur, India
4Guide, Department of Computer Science and Engineering, Rajiv Gandhi College of Engineering

Research And Technology, Chandrapur, India

Abstract : Our study introduces a chatbot for

preliminary disease diagnosis, employing Flask, NLP,

and machine learning techniques. Through Spacy's pre-

trained model, the chatbot extracts symptom keywords,

which are vectorized using TF-IDF and fed into a

Random Forest classifier. The chatbot provides users

with accurate disease predictions, enriched with

dynamically integrated disease descriptions and

precautions. This fusion of NLP and machine learning

demonstrates a scalable approach to healthcare

technology.

Keyword Extraction: Spacy was used to tokenize the text

and extract keywords, filtering out stop words and non-

alphabetic tokens.

1.INTRODUCTION

The integration of technology into healthcare services

has opened up new opportunities for enhancing patient

care and accessibility. Our paper focuses on one such

innovation: a symptom-checker chatbot designed to

assist users in identifying potential diseases based on

their reported symptoms. By harnessing the power of

Flask, Spacy, and Scikit-learn, we have developed a

robust and efficient tool for preliminary health

assessment that does not rely on advanced AI

techniques. This introduction provides an overview of

our chatbot's development and implementation,

emphasizing its significance in providing practical and

scalable solutions for preliminary disease diagnosis

and health information dissemination.

2. METHODOLOGY

Data Collection

The dataset used for this project consists of symptoms

and their associated diseases. The data was sourced

from publicly available health datasets and compiled

into a comprehensive CSV file. Additional datasets

were used to gather detailed disease descriptions and

precautionary measures, ensuring that the chatbot can

provide well-rounded and informative responses.

Data Preprocessing

Loading Data: The datasets were loaded using pandas

for data manipulation and analysis.

Symptom Extraction: Columns starting with

'Symptom_' were identified and extracted, with

symptoms combined into a single text entry per

disease case.

Text Vectorization

A TF-IDF vectorizer from Scikit-learn was employed

to transform the text data (symptoms) into numerical

features. This method converts a collection of raw

documents to a matrix of TF-IDF features, which are

suitable for machine learning models.

Model Training

A Random Forest classifier was chosen due to its

robustness and accuracy in handling classification

tasks. The model was trained on the vectorized

symptoms and corresponding disease labels from the

dataset. The training process involved splitting the

dataset into training and test sets, fitting the model, and

validating its performance.

Chatbot Implementation

The chatbot was implemented using Flask, a

lightweight WSGI web application framework in

Python. The web interface allows users to input their

symptoms and interact with the chatbot.

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164820 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2216

Handling Conversations

A conversation management system was implemented

to handle ongoing user interactions, ensuring that

multiple symptoms can be gathered and processed

effectively.

3. CODE

from flask import Flask, render_template, request,

jsonify

import pandas as pd

import spacy

from sklearn.ensemble import

RandomForestClassifier

from sklearn.feature_extraction.text import

TfidfVectorizer

app = Flask(_name_)

Load dataset from CSV file

def load_dataset(file_path):

 df = pd.read_csv(file_path)

 return df

Load disease descriptions from CSV file

def load_disease_descriptions(file_path):

 df = pd.read_csv(file_path)

 return

df.set_index('Disease')['Description'].to_dict()

Load disease precautions from CSV file

def load_disease_precautions(file_path):

 df = pd.read_csv(file_path)

 return

df.set_index('Disease').to_dict(orient='index')

Load English tokenizer, tagger, parser, and NER

nlp = spacy.load("en_core_web_sm")

Define function to extract keywords from text

def extract_keywords(text):

 doc = nlp(text)

 return [token.text.lower() for token in doc if not

token.is_stop and token.is_alpha]

Define function for chatbot conversation

def chat(user_input, vectorizer, classifier,

disease_descriptions, disease_precautions):

 symptoms = extract_keywords(user_input

 # Vectorize symptoms

 symptoms_text = ' '.join(symptoms)

 symptoms_vectorized =

vectorizer.transform([symptoms_text])

 # Predict diseases based on symptoms

 predicted_diseases =

classifier.predict(symptoms_vectorized)

 if len(predicted_diseases) > 0:

 predicted_disease = predicted_diseases[0]

 response = f"Based on your symptoms, it appears

that you may have {predicted_disease}."

 # Add disease description to response

 if predicted_disease in disease_descriptions:

 response += f" Description:

{disease_descriptions[predicted_disease]}"

 # Add disease precautions to response

 if predicted_disease in disease_precautions:

 response += "\nPrecautions:"

 precautions =

disease_precautions[predicted_disease]

 for key, value in precautions.items():

 response += f"\n- {key}: {value}"

 else:

 response += "\nPrecautions: Precautions not

available for this disease."

 else:

 response = "I couldn't find a matching disease for

the provided symptoms."

 return response

Load dataset

dataset = load_dataset("dataset.csv")

Load disease descriptions

disease_descriptions =

load_disease_descriptions("symptom_description.csv

")

Load disease precautions

disease_precautions =

load_disease_precautions("symptom_precaution.csv"

)

Split dataset into symptoms and diseases

symptoms_columns = [col for col in dataset.columns

if col.startswith('Symptom_')]

symptoms =

dataset[symptoms_columns].apply(lambda x: '

'.join(x.dropna()), axis=1)

diseases = dataset['Disease']

Vectorize symptoms

vectorizer = TfidfVectorizer()

symptoms_vectorized =

vectorizer.fit_transform(symptoms)

Train classifier

classifier = RandomForestClassifier()

classifier.fit(symptoms_vectorized, diseases)

Flag to indicate whether conversation is ongoing

ongoing_conversation = False

symptoms_list = []

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164820 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2217

Define endpoint for symptom checker

@app.route('/symptom_checker', methods=['POST'])

def symptom_checker():

 global ongoing_conversation, symptoms_list

 data = request.json

 user_input = data['user_input']

 if not ongoing_conversation:

 ongoing_conversation = True

 symptoms_list.clear()

 if user_input.lower() == 'done':

 if len(symptoms_list) < 1:

 response = "Bot: Please provide at least one

symptom."

 elif len(symptoms_list) < 2:

 response = "Bot: Please provide at least two

symptoms for accurate assessment."

 else:

 response = chat(' '.join(symptoms_list),

vectorizer, classifier, disease_descriptions,

disease_precautions)

 ongoing_conversation = False

 response += "\nBot: Do you want to restart the

conversation? (yes/no)"

 else:

 symptoms_list.append(user_input.strip().lower())

 response = "Bot: Do you have any other

symptoms? If yes, please describe them. If no, type

'done'."

 return jsonify({'response': response})

Define route for serving the homepage

@app.route('/')

def home():

 return render_template('index.html')

if _name_ == '_main_':

 app.run(debug=True)

4. RESULT

The chatbot underwent rigorous testing with various

user inputs to evaluate its performance. It

demonstrated high accuracy in predicting diseases and

provided informative descriptions and precautions.

User feedback indicated satisfaction with the chatbot's

functionality and usability.

5.REFERENCE

[1] Gupta, R., et al. (2023). "Advances in Natural

Language Understanding: A Comprehensive

Survey." ACM Computing Surveys, 56(3), 123-

145.

[2] Zhang, Y., Kim, M. (2022). "Multilingual Natural

Language Processing: Challenges and

Opportunities." Proceedings of the International

Conference on Language Resources and

Evaluation, 78-91.

[3] Chen, L., et al. (2024). "Integration of Wearable

Health Devices with Chatbot Systems: A

Review." Journal of Medical Internet Research,

16(5), e11234.

