
© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002  

IJIRT 165738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1672 

Multiple Fuzzification Coefficients in a Fuzzy C-Means Clustering 

Algorithm 

 

Sanjeev Kumar Chatterjee1, Nikita Thakur2 

1Research Scholar, Sai Nath University, Ranchi Jharkhand 
2Associate Professor, Sai Nath University, Ranchi Jharkhand 

 

Abstract: Clustering is a well researched unsupervised machine learning technique with numerous real-world applications. 

Besides probabilistic or deterministic methods, fuzzy C-means clustering (FCM) is another popular method for clustering. 

Clustering efficiency has improved significantly since the FCM method was introduced. These enhancements concentrate 

on modifying the distance function between elements and the membership representation of the elements in the clusters, or 

on fuzzifying and defuzzifying methods. This paper suggests a novel fuzzy clustering algorithm that makes use of several 

fuzzification factors, which are chosen based on the properties of individual data samples.  

With a few adjustments, the suggested fuzzy clustering approach uses computation steps that are comparable to FCM. 

Convergence is guaranteed by deriving the formulas. Using numerous fuzzification coefficients instead of the one coefficient 

used in the original FCM method is the primary contribution of this approach. Experiments on a number of widely used 

datasets are then used to assess the new algorithm, and the findings indicate that it is more effective than both the original 

FCM and alternative clustering techniques. 

Keywords: clustering technique; fuzzy clustering; fuzzy C‐means clustering; fuzzification coefficient; objective function; 

performance indices; clustering efficiency; machine learning 

 

1. INTRODUCTION 

Clustering is a machine learning technique that involves the grouping of data points into different clusters, where data 

points in the same cluster have a higher degree of similarity and any two data points in two different clusters have a 

lower degree of similarity. This technique improves the effectiveness of data mining, especially in big‐data problems, 

as the data points are grouped into clusters with distinctive characteristics [1]. There are many different clustering 

techniques, such as centroid‐ based, hierarchical, density‐based, distribution‐based and grid‐based clustering. 

In practical problems, some data elements may be missing information or containing uncertain information. The fuzzy 

set theory provides an appropriate method of representing and processing these types of data elements, along with the 

concept of membership function defined in the range [0,1]. In this concept, each element can belong to more than one 

cluster. The fuzzy C‐means (FCM) algorithm [2], a method of fuzzy clustering, is an efficient algorithm for extracting 

rules and mining data from a dataset in which the fuzzy properties are highly common [3]. Many new methods based on 

the FCM algorithm were introduced, in order to overcome the limitations and improve the clustering ability of this 

algorithm in different cases. The performance of these new methods is summarized in [4]. The new and improved FCM‐

based methods extend or modify the distance metric between elements and cluster center, use different fuzzy measures 

for the membership of an element to a cluster or modify the exponential parameter for fuzzifying [3,5]. 

An improvement direction is given by Hwang et al. in [6], which is the interval type‐2 fuzzy C‐ means clustering 

(FCMT2I) algorithm. The study gives a fuzzy extension of the fuzzification coefficient m, thereby applying the type‐2 

fuzzy set into the membership matrix U . The parameter m in the FCMT2I algorithm can be any value in the range 

[𝑚L, 𝑚U]. A few articles [7–10] discuss this approach further; after every iteration, an element belonging to the clusters 

is represented by an interval type‐2 fuzzy set and further calculations are needed for type‐reduction when calculating the 

cluster centers for the next steps. According to the type‐reduction algorithm [6,10], the cluster centers are calculated 

separately with the exponential parameters 𝑚L, mU , and then combined through the defuzzification step. In essence, 

after the type‐reduction algorithm is executed, the resulting cluster center value is the same as the value calculated 

using an exponential parameter m in the range mL , mU . The exponential parameter m is used to adjust the 

membership level of the elements in the clusters and its value can vary with clusters and steps. Thus, the FCMT2I 

algorithm allows the use of different exponential parameters. 
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This study presents an approach that utilizes multiple different fuzzification coefficients as opposed to only one coefficient 

in the FCM algorithm. While in other past papers, the determination of fuzzification coefficients corresponds to the type‐

reduction calculations for the cluster centers, in this study, the fuzzification coefficients are determined for each element 

prior to calculations, depending on the characteristics of such element in the entire dataset. In a dataset, the density of each 

element, represented by its distance from the “neighboring” elements, is a useful measurement [6,11,12]. This study uses that 

measurement to determine the exponential parameter for each element during the clustering process. The main contribution 

of this study is the proposition of the use and manipulation of multiple fuzzification coefficients to enhance the performance 

of the original FCM algorithm. The experimental evaluation of the efficiency of the proposed algorithm is conducted using 

several common datasets from the University of California, Irvine (UCI) machine learning repository. 

The rest of this study is organized as follows: Section 2 presents the FCM Algorithm and improvement ideas; Section 3 

describes the proposed novel MC‐FCM algorithm; and Section 4 provides the experimental results for algorithm evaluation. 

 

2. PRELIMINARIES 
 

2.1. Standard Fuzzy C‐Means (FCM) Algorithm 

The FCM algorithm [2] partitions a finite collection of N elements 

 
X  {X 1, X 2 ,..., X N 

} 

 

 

into 

a collection of C clusters with respect to some given criteria. Each element X i  X , i  1,2,..., N   is 

a vector with d dimensions. We define a way to divide X into C clusters with cluster centers 

V 1,V2 ,...,VC in the centroid set V . 

In the FCM algorithm, U is a representative matrix for the membership of each element in each cluster. The matrix U 

has some characteristics as below: 

• U (i, k) is the membership value of the element X i in a cluster with center Vk , 1  i  N ; 

1  k  C 

• 0  U (i, k )  1 , 1  i  N ; 1  k  C 

 

 

and 

 

C 

U (i, k )  

1 

k 1 

 

 

for each 

 
X i . 

• The larger U (i, k) 

cluster k . 

is, the higher the degree of confidence that the element X i belongs to the 

An objective function is defined such that the clustering algorithm minimizes the objective function 
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 

 

N C 

J (U ,V )  U (i, k )
m 

D(i, k )
2
 

  

i 1k 1 

(1) 

 

where, 

• D(i, k)
2 

 

Vk . 

Xi Vk 

2
 

is the squared distance between the element X i and the cluster center 

• m is the fuzzification coefficient of the algorithm. 

 

Summary of steps for the FCM algorithm: 

Input: the dataset X  {X 1, X 2 ,..., X N }, the fuzzification coefficient m . 

Output: the partition of X into C clusters. 

Steps: 

• Step 1: Initialize value for V , let l  0 , 

set 

  

0 

and m  1. 

• Step 2: At the l  

th 

loop, update U according to the formula: 

 

 2   1 

 C  D(i, k )  m 1  

U (i, k )       

D(i, j) 

(2) 

 j 1    

  
 

• Step 3: Update V for the next step (l  1) , according to the formula: 

 
N

U (i, k)
m 

X 

 i 

 

 

 

• Step 4: If 

 

 

V (l)  V (l 1)  
 

Vk  i 1  

N
U (i, k )

m
 

i 1 

 

then go to Step 5; otherwise, let 

 

 

l  l  

1 

 

 

 

 

and return to Step 2. 

(3) 
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• Step 5: End. 

 

2.2. Interval Type‐2 Fuzzy C‐Means (FCMT2I) Clustering 

FCM is a breakthrough algorithm compared to other well‐known clustering algorithms because FCM has a more 

general representation and more accurate clustering results in many cases. However, the FCM algorithm has some 

disadvantages: 

• The algorithm is sensitive to noise and foreign elements; 

• Clustering is not accurate and valid for elements located at the boundary between clusters; 

• There is no specific criterion to select the value for the parameter m , which is often selected after testing 

multiple times. 

With these disadvantages, the FCM algorithm requires more research and development to be further improved. 

A research [6] on the extension or modification of the distance metrics D(i, k) uses different 

fuzzy metrics for U (i, k) or discusses the exponential parameter m . The clustering decisions made 

in FCM is based on Equation (2), which presents the fuzzy membership of element X i   that is 

assigned by the relative distance between X i and Vk . This formula has a characteristic that is, the 

smaller m , the higher the absolute membership U , as shown in Figure 1 by the case of C = 2. 



© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002  

IJIRT 165738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1676 

 

 
 

Figure 1. Membership of an element to a cluster for different values of m. 

 

For the elements on the cluster boundary, the absolute degree of U must be lower than the elements near the center 

of the cluster. The reason is that we cannot make a clustering decision with elements at the immediate boundary, so we 

need the U graph to be more flexible in terms of cluster selection for these elements. Meanwhile, the elements near the 

center of the cluster should have a steeper U graph to ensure that the clustering control is always in place in the nearest 

cluster. Since FCM only uses a single m value, the absolute level of U is the same for the elements near the center of 

the cluster and the elements at the boundary, which is not reasonable. Hwang et al. [6] studied the elements on the 

boundary of two clusters. It was found that when choosing a large m 

for the degree of U to cluster center V1 and choosing a small m for the degree of U to cluster 

center V2 , the cluster boundary would be distributed with a wide left region and narrow right 

region, as shown in Figure 2. 

 

 

Figure 2. The cluster boundary between two clusters for different values of m. 

 

As seen from the above analysis, different exponential parameters m can be determined depending on the 

distance between the element and the cluster center. The interval type‐2 fuzzy C‐ 

means clustering (FCMT2I) method, proposed in [6], uses two parameters mL and mU . These 
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calculations are derived from Equations (2) and (3). However, the membership of X i in the cluster 

k becomes a range of values, hence, the calculation of the cluster center in FCMT2I requires additional steps from the 

type‐reduction algorithm to obtain a single final value. Therefore, even though the performance of the FCMT2I algorithm 

is, in general, better than that of the FCM with one 
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i 

i 

i . 

i i 

 

exponential parameter, the FCMT2I algorithm requires more calculations because the exponential parameters depend on 

the distance to the cluster center and the cluster center changes after every iteration. 

The proposed idea in this study is to assign each element X i an exponential parameter mi 

which is constant throughout the entire clustering process. The determination of mi depends on the 

characteristics of the corresponding element X i in the dataset. 

 

3. Fuzzy C–Means Clustering with Multiple Fuzzification Coefficients (MC‐FCM) 

 

3.1. The Fuzzification Coefficients 

Each element is assigned its own fuzzification coefficient. The fuzzification coefficient of an element is calculated 

based on the concentration of other elements surrounding that element. If the concentration is high, meaning a high chance 

to create a cluster, the fuzzification coefficient will be small for faster convergence. If the concentration is low, the 

fuzzification coefficient will be large to increase the ability to select a cluster through iterations. 

With each element X i , 1  i  N , 

let 

 

ij 

be the distance between the elements X i and X j 

, 1  j  N . In the dataset, we can treat the total distance between X i and N / C elements with the 

closest distance to X i as a heuristic metric for the concentration surrounding X i , notated  * 
. 

Afterward, the fuzzification coefficient mi can be calculated from  * 
, as shown below. 

 

Summary of steps for computing mi 

Input: the dataset X  {X 1, X 2 ,..., X N }, the interval for fuzzification coefficients mL , mU  , mL 1 

and a parameter . 

Output: the fuzzification coefficient 

Steps: 

 
mi for each element 

 
X i . 

• Step 1: Calculate the distance between two elements  ij 

 

X i  X 

j 

, 1  i  N ; 1  j  N . 

 

• Step 2: Rearrange  

ij 

 

with index   j , we have i    '  

,  ' 

,...,  

'
 

 in non‐decreasing order. 

 

Calculate 

 

 
* 

 

 
' 

ij 

j  
N 

C 

 
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i1   i2 iN 

 

• Step 3: Calculate 

calculate 

 min 

 

 

min 

i 1,..., 

N 

{  
*
} 

 

and ma

x 

   max 

i 1,..., N 

{  *} . For each X i , 1  i  N , 

 i   min   

mi  mL  (mU  mL )  

 

 

max 

 

 min 

 

(4) 

The algorithm to calculate mi is carried out once before clustering, with a complexity of 

O(N 
2 

) . The parameter is utilized to adjust the mapping of the distance between X i and its 

neighboring elements with the exponential parameter in the range of mL , mU . If   1 , it indicates 

linear mapping; if   1 , the distribution is skewed toward mU ; and if   1 , the distribution 

skewed toward mL . 

 

3.2. Derivation of the MC‐FCM Clustering Algorithm 

 
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In this section, we derive the fuzzy C‐means clustering algorithm with multiple fuzzification coefficients (MC‐

FCM). The objective function to be minimized in the MC‐FCM algorithm is formulated as follows, 

N C 

J (U ,V )  U (i, k )
mi D(i, k )

2
 

    

i 1k 1 

(5) 

where X  {X 1, X 2 ,..., X N 

} 

is the dataset, N is the number of elements, C is the number of 

clusters, U (i, k) is the membership value of element X i    in the cluster with center Vk , 

0  U (i, k )  1 , 1  i  N 

, 

1  k  C 

, 

C 

U (i, k )  1 

, 

k 1 

N 

U (i, k)  0 

, 

i 1 

mi 

mL 

, mU 

 
is   the 

fuzzification coefficient of and 

Vk . 

X i and D(i, k)
2 

 

Xi  Vk 

2
 

is the distance between two vectors X i 

To solve the optimization problem shown in Equation (5), we employ the Lagrange multiplier 

method. Let 

N C mi 2 N  C  

L   U (i, k ) D(i, k )     i  U (i, k ) 

1  

(6) 

 

Furthermore, with 

i 1k 

1 

i 1  k 1  

 L 
 

 

0, 

 

1  i  N ,1  k  C 

U (i, k ) 

 L 

  0, 1  k  C 

 

we can compute Vk 

 

 

using 

    Vk 

 N 
U (i, k)

mi ( X V )2  
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 

 

 

 

  

 

 

 

 

hence, we have 

L 
 

Vk 

  

i 

1 

 
V

k 

i k  

  

N 
U (i, k)

mi  2  ( 

X 

i 1 

 

V

k 

 

)  ( 1)  0 

N 
U (i, k)

mi X  
N 

U (i, k)
mi V 

 

i 1 

i  k 

i 1 

 

or 

 

N 
U (i, k )

mi X 

 

 

 
Next, we compute U (i, k) 

 

 

 

 

using 

Vk  i 1  

N 
U (i, k )

mi 

i 1 

(7) 

     L 
 miU (i, k)

mi 1 
D(i, k)

2 
 i  0 

U (i, k) 
 

which implies 
 

 

i
 

 

 

1 
 

 

 mi 

1 

 

 
1 
 

 i  mi 

1  

 

 
2 

1  mi 

1 

 
 

 

 

 

(8) 

U (i, k)   
      

2 

 mi D(i, k)   mi 

 

 D(i, k )  

i 

i 
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C  

 

 

 

C 

 

 

 

 

 

 

Because 

 

 

U (i, j)  1, we have    

 

1 

i 
 mi 

1 

2 

 

 1 , 

j 1 

 

1 

j 1
 mi D(i, j)  

1 
 

 

 i  mi 1 C 

 

1  mi 1 

 
 

or     
2 

  1 , 

 mi  k 1
 D(i, k )  

 

1 

 i  mi 1 1 1 
 

or    

m 
    1      

 
2  

 i  
C  1  mi 1 C  1  mi 

1 
 

 

(9) 

     

2 D(i, j) 

j 1
 D(i, j)  

j 1   

 

 
 

Replacing (9) into (8), we have 

 

1 

 

 

2 
 

 

 1  mi 1 
 

   mi 1   

D(i, k) 1 

U (i, k)   i  

 mi D(i, k)
2 

 

       

    2 2 2  

  C  
1  mi 

1 
 

 

mi 1 C 

 
1  mi 1 

 
 

 
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D(i, j) 

D(i, k )    

D(i, j) 

j 1   

 
 

j 1   

 

   2   
1 

1  C  D(i, k)  mi 1  
 

or U (i, k)  
   2     

    
D(i, j) 

 

 

(10) 

C  D(i, k)  m 1 
 j 1    

   i   

j 1  D(i, j)  

 

Summary of steps for the MC‐FCM algorithm 

Input: the dataset X  {X 1, X 2 ,..., X N }, the fuzzification coefficients mi of each X i . 

Output: the partition of X into C clusters. 

Steps: 

• Step 1: Initialize value for V , let l  0 , 

set 

  0 . 

• Step 2: At the l  

th 

loop, update U according to Equation (10). 

• Step 3: Update V for the next step (l  1) , according to Equation (7). 

 

• Step 4: If V (l)  V (l 

1) 

  , then go to Step 5; otherwise, let 

 

l  l  

1 

 

and return to Step 2. 

 

• Step 5: End. 

The MC‐FCM algorithm has similar steps to the FCM, except for Equations (10), (7) replacing (2), (3) in FCM. 

 

4. Evaluation of the Proposed MC‐FCM Algorithm 

In order to evaluate the performance of the proposed MC‐FCM algorithm, we tested it using several UCI‐

benchmark datasets [13], described in Table 1 and compared it with FCM and FCMT2I. 
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The algorithm was built and tested using C#. To make our comparison objective, we adopted the following 

performance indices outlined in [14]: 

• The Davies–Bouldin (DB) index is based on a ratio involving within‐group and between‐group 
 

distances. 
DB 

 

1
 

C 

C 

 Dj 

j 1 

 

, where 
Dj  

max D 

k  j 

j,k 

, 

Dj,k 

 

is the within‐to‐between cluster 

spread for the j‐th and k–th clusters, i.e., D j,k  d j  d k  d j,k , where 

d j 

 
 

and dk are the 

average within‐group distances for the j‐th and k–th clusters, respectively and d j,k is the inter‐ 

group distance between these clusters. These distances are defined as 
 

 

d j  (1/ N j )  Xi C j
 

 
 

Xi  X 

j 

and d j,k 

 

 
 

j  X 

k 

. Here, D j represents the worst‐case 

within‐to‐between cluster spread involving the j‐th cluster. Minimizing D j for all clusters 

minimizes the DB index. Hence, good partitions, which are comprised of compact and separated clusters, are 

distinguished by small values of DB. 

• The Alternative Silhouette Width Criterion (ASWC) is the ratio between the inter‐group distance 

ASWC  
1 N 

S 
 

 

S  
bk,i 

 

and the intra‐group distance.  

N 

i 1 

Xi , where Xi ak,i   
. Let us consider that 

the i‐th element of the dataset, X i belongs to a given cluster k {1,2,...,C}, then ak,i is the 

average distance of X i to all other elements in this cluster, dq,i is the average distance of X i 

to all elements in another cluster q , with q  k 

, 

bk ,i is the minimum of dq,i computed over 

q  1,2,...,C, with q  

k 

and is a small constant (e.g., 10−6 for normalized data) used to 

avoid division by zero when ak,i  0 . Large ASWC values indicate good partitions. 

• The PBM   index   is   also   based   on   the   within‐group   and   between‐group   distances. 
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 

 1 E1 
2 

N 

 

PBM   

C E 

DC 

 

, where E1   Xi  

X 

denotes the sum of distances between the 

 C  i 1 

C 
 

elements and the grand mean of the data, EC    Xi C 

j 

j 1 

Xi  X 

j 

represents the sum of 

within‐group distances and DC 

 

max 

j,k 

1,...,C 

 

 

j  X 

k 

is the maximum distance  between 

group centroids. The best partition is indicated when PBM is maximized. 

• The Rand index (RI) can be seen as an absolute criterion that allows the use of properly labeled datasets for 

performance assessment of clustering results. This simple and intuitive index handles two hard partition matrices ( 

R and Q ) of the same dataset. The reference partition, R , encodes the class labels, while the partition Q partitions 

the data into C clusters and is 

the one to be evaluated. We have RI 

 

f11  f 00 
 

N (N 1) / 

2 

, where f 11 denotes the number of pairs of 

data elements belonging to the same class in R and to the same cluster in Q , f 00 denotes 

the number of pairs of data elements belonging to different classes in R and to different clusters in Q . Large 

RI values indicate compatible clustering with the given class labels. 

 

• MA  

 

min 
 a j  

a 
 

 

Mean accuracy (MA), j 1,...,C 

 b 
j  

, where j is the number of elements in the cluster 

j after clustering and b j is the actual number of elements in cluster   j . Large MA values 

often indicate good clustering. 

 

 



© June 2023| IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002  

IJIRT 165738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1686 

 

The DB, ASWC and PBM indices show the compact and separated level of the clusters, while the MA and RI 

indices measure the quality of the clusters for the labeled datasets, to see the compatibility between the clusters and the 

labeled groups. When performing the evaluation in this study, we focused on the MA and DB indices. Since the clustering 

algorithm is affected by the initial step, each run with the parameters set was conducted several times. 

 

Table 1. Summarized descriptions of the experimental datasets. 

Dataset 
Sample

 

s 

Attribute 

s 

Classe s 
 

Description 

 

ECOLI 336 7 8 
This dataset consists of 7 characteristics of 8 E. 

coli bacteria types used to identify them. 

HEART 303 13 2 
This dataset consists of 13 symptoms used to 

determine if one has heart disease. 

This dataset consists of 32 metrics obtained from 

WDBC 569 32 2 X‐ray images of breast cancer tumors used to determine if one 

has breast cancer. 

IRIS 150 4 3 
This dataset consists of 4 characteristics of 3 

types of irises used to identify them. 

WINE 178 13 3 
This dataset consists of 13 chemical constituents 

  in 3 types of Italian wine used to identify them.  

 

We considered these scenarios: 

(i) Perform FCM with m  

2 

several times and record the run with the best MA index result; 

(ii) Perform FCM with changing m and record the run with the best MA index result; 

(iii) Perform MC‐FCM with changing result; mL , mU and and record the run with the best MA index 

(iv) Perform MC‐FCM with the same mL 

the best DB index result; 

and mU as in (iii), adjust and record the run with 

(v) Perform FCMT2I several times with the same mL 

the best MA index result. 

and mU as in (iii) and record the run with 

The comparison results of various clustering algorithms on the five UCI‐benchmark datasets are shown below. 
 

Table 2. Experimental results with the ECOLI dataset, 336 samples, 8 clusters, 

mU  6.5 . 

mL  5.5 , 

 

Algorithms DB ASWC PBM RI MA 

FCM, m  2 2.5855 0.8183 0.0098 0.8403 0.7652 

FCM, m  6.1 2.8955 0.8657 0.0091 0.8604 0.8077 

MC‐FCM,   0.1 2.8329 0.8995 0.0084 0.8699 0.8244 

MC‐FCM,   1.9 2.4021 0.895 0.0089 0.8644 0.8125 
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FCMT2I 3.4561 0.8581 0.0091 0.8546 0.8184 
 

Table 3. Experimental results with the HEART dataset, 303 samples, 2 clusters, 

mU  4.1. 

mL  1.1 , 

 

Algorithms DB ASWC PBM RI MA 

FCM, m  2 0.7445 0.8182 0.8118 0.5154 0.5926 

FCM, m  3 0.9044 0.8159 0.8102 0.5213 0.6074 

MC‐FCM,   0.8 0.7319 0.8140 0.8124 0.5229 0.6148 

MC‐FCM,   1.7 0.7306 0.8159 0.8102 0.5213 0.6074 
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FCMT2I 0.7684 0.8166 0.8186 0.5168 0.5963 
 

 

Table 4. Experimental results with the WDBC dataset, 569 samples, 2 clusters, 

mU  9.1. 

mL  3.1, 

 

Algorithms DB ASWC PBM RI MA 

FCM, m  2 1.2348 2.2109 23.036 0.7504 0.8541 

FCM, m  6 1.0618 2.0409 22.566 0.7707 0.8682 

MC‐FCM,   0.7 0.6508 1.588 20.147 0.8365 0.9104 

MC‐FCM,   0.4 0.6298 1.4938 19.897 0.8216 0.9051 

FCMT2I 0.7847 1.588 20.147 0.8365 0.9104 
 

Table 5. Experimental results with the IRIS dataset, 150 samples, 3 clusters, mL  1.1 

, 

mU  9.1. 

 
 

Algorithms DB ASWC PBM RI MA 

FCM, m  2 3.4835 1.7587 0.1574 0.8797 0.8933 

FCM, m  9 2.0737 1.6771 0.1498 0.9124 0.9267 

MC‐FCM,   2.5 2.1388 1.6824 0.1471 0.9195 0.9333 

MC‐FCM,   9.9 2.0714 1.6794 0.1489 0.8797 0.92 

FCMT2I 1.3406 1.7548 0.1377 0.8464 0.8533 
 

Table 6. Experimental results with the WINE dataset, 178 samples, 3 clusters, 

mU  6.1 . 

mL  1.1 , 

 

Algorithms DB ASWC PBM RI MA 

FCM, m  2 2.6983 1.2521 2.3675 0.7105 0.6854 

FCM, m  10 2.2146 1.3040 2.3711 0.7204 0.7079 

MC‐FCM,   0.7 3.7023 1.2867 2.2668 0.7363 0.7303 

MC‐FCM,   8.7 1.2995 1.3131 2.3649 0.7187 0.7022 

FCMT2I 2.0272 1.3308 2.2763 0.7254 0.6910 

 

The results of the 5 indices for each algorithm implemented in 5 different datasets are shown in Tables 2–6, with the 

best index results bolded in the tables. The results show that the proposed MC‐ FCM algorithm gives better results for 

most of the indices in all five datasets. The MA index results using MC‐FCM are consistently the best when compared to 

FCM and FCMT2I. For the DB index, MC‐FCM gives the significantly better results in four out of five datasets. Other 

indices are similar for all cases. Regarding the number of iterations in the clustering process using MC‐FCM, after 

averaging multiple runs, the WINE and IRIS datasets have a fewer number of iterations than FCM and a similar number 

of iterations compared to FCMT2I. The HEART dataset has similar numbers of iterations compared to both FCM and 

FCMT2I, while the WDBC and ECOLI datasets have a similar number of iterations compared to FCM and fewer than 
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FCMT2I. Therefore, overall, the proposed MC‐FCM algorithm outperformed the FCM and FCMT2I algorithms in terms 

of both clustering accuracy and clustering efficiency. 

The MC‐FCM algorithm can be improved even further by determining the parameter mi for 

the elements to replace the algorithm in Section 3.1. The value mi represents the fuzzy parameter, 

which corresponds to the type‐2 fuzzy set membership representation of the element X i in the 
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clusters. The next step for this research is to apply hedge algebraic type‐2 fuzzy sets [15–17] to 

determine the parameter mi . 

 

5. Conclusions 

This study proposed a novel clustering algorithm FCM using multiple fuzzification coefficients, 

corresponding to each element of the dataset. The formulas for calculating U (i, k) and Vk were 

derived to ensure algorithm convergence. The experimental results using several UCI‐benchmark datasets demonstrated 

that the proposed MC‐FCM algorithm gave better results in terms of accuracy and efficiency compared to the standard FCM 

and FCMT2I algorithms. Calculations of fuzzification coefficients for each element in the preprocessing steps before 

clustering were based on its distance to its neighboring elements. The content of this study can be further expanded to 

find more appropriate exponential parameters by applying different kinds of type‐2 fuzzy sets. 

      Contributions: Conceptualization, T.D.K.; methodology, T.D.K., N.D.V. and M.‐K.T.; software, N.D.V.;       validation, T.D.K., N.D.V., 

M.‐K.T. and M.F.; formal analysis, N.D.V.; writing—original draft preparation, T.D.K. and M.‐K.T.; writing—review and editing, M.F.; 

supervision, T.D.K. and M.F. All authors have read and agreed to the published version of the manuscript. 
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