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Abstract - Self-driving car system using NVIDIA’s 

Convolutional Neural Network (CNN) model, which 

maps raw pixel data from a single front-facing camera 

directly to steering commands. Leveraging deep 

learning, we trained the model on a diverse dataset 

encompassing city streets, highways, and off-road 

terrains. The simulation showcases the model's ability to 

autonomously navigate complex driving conditions 

without traditional components like lane detection, path 

planning, or control algorithms. Instead, the model 

learns to interpret and respond to road features and 

driving scenarios solely from human steering inputs 

during training. Our findings highlight the benefits of an 

end-to-end learning approach, where the CNN optimizes 

the entire driving task integrally, achieving robust 

performance across various driving contexts. This 

method potentially enhances efficiency and effectiveness 

over traditional autonomous driving systems, 

demonstrating the feasibility of streamlined, deep 

learning-based solutions for self-driving technology.  
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I. INTRODUCTION 

 

The emergence of Convolutional Neural Networks 

(CNNs) marks a significant advancement in pattern 

recognition, particularly within image analysis. 

Departing from conventional methods reliant on 

manual feature extraction and subsequent 

classification, CNNs have transformed the field by 

autonomously learning features directly from raw 

data. This paradigm shift has shown exceptional 

efficacy in tasks such as image recognition, leveraging 

the intrinsic capability of convolution operations to 

capture intricate spatial relationships within images 

[1]. Moreover, the availability of vast labeled datasets 

such as the Large-Scale Visual Recognition Challenge 

(ILSVRC) and the computational power of modern 

graphics processing units (GPUs) have propelled 

CNNs to the forefront of machine learning in recent 

years.  

The capabilities of CNNs to address the complex 

challenge of autonomous driving. Our journey began 

over a decade ago with the DARPA Autonomous 

Vehicle (DAVE) project, an initial endeavor to train a 

scaled-down radio control car to navigate challenging 

environments based on human-driven data. This 

pioneering effort laid the groundwork for end-to-end 

learning in autonomous driving, drawing inspiration 

from works such as Pomerleau's Autonomous Land 

Vehicle in a Neural Network (ALVINN) system.  

 

II. LITERATURE REVIEW 

 

(N. Corporation, 2016) The rapid development of 

automotive technology is largely due to advances in 

deep learning, particularly through the use of 

Convolutional Neural Networks. NVIDIA, among the 

pioneers in this field, has successfully used CNNs for 

autonomous driving and embedded these models into 

their proprietary driving frameworks to improve 

perception, planning and control performance in 

autonomous vehicles. This review focuses on basics, 

development steps, and current techniques for driving 

using the NVIDIA model. The introduction of 

Convolutional Neural Networks heralded a 

revolutionary era in image analysis and pattern 

recognition. Traditional image processing methods 

relied heavily on manual extraction, requiring careful 

planning of individual elements and then insertion in 

stages. CNNs have revolutionized this paradigm by 

enabling automatic learning of sequences from pixel 

data. This unique ability to independently learn and 

extract features allows CNNs to detect complex 
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patterns and structures in images, making them highly 

effective at tasks such as image recognition and object 

recognition. 

(Nicolas Gallardo,2017) The context of autonomous 

driving, these networks are essential for processing 

large amounts of sensor data, which form the 

underlying technology that allows the sensory system 

to recognize and respond to road users, obstacles and 

road signs. The path to autonomous driving using 

neural networks may begin with early initiatives such 

as DARPA's Autonomous Vehicles project. The 

project aimed to train radio-controlled vehicles to 

navigate the environment using data obtained from 

human-driven vehicles. These early efforts showed 

that neural networks could be taught to mimic human 

behavior, paving the way for advanced systems. Based 

on this basic project, NVIDIA launched, the latest 

model of the automotive industry and a leader in its 

field. NVIDIA Pilot Net architecture is considered a 

significant development in this field; It trains CNNs to 

map raw pixel data from camera input to control 

commands.  

(A. Pomerleau,1989) This approach is quite different 

from traditional modular networks, which consist of 

performing various functions such as sensing, 

planning and control. Instead, end-to-end learning 

facilitates the process of learning the direct 

relationship between cognitive processes and control 

processes, creating a more efficient and 

comprehensive decision-making process. NVIDIA’s 

DRIVE is a complete platform designed to simplify 

the development and deployment of autonomous 

systems. The platform combines powerful computing 

hardware with software and hardware to create 

powerful automation solutions. Using deep learning 

and artificial intelligence, the platform processes input 

from a range of sensors including cameras, LiDAR 

and radar to create detailed information about vehicles 

and make driving decisions.  
 

III. OVERVIEW OF THE DAVE-2 SYSTEM 

 

A simplified block diagram of the DAVE-2 training 

data gathering system is depicted in Figure 1. The data 

acquisition vehicle is equipped with three cameras 

installed behind the windshield. Simultaneously, the 

system records the steering angle applied by the 

human driver along with timestamped video from the 

cameras. The steering command is obtained by 

connecting to the Controller Area Network (CAN) bus 

of the car. To ensure system independence from the 

car's geometry, the steering command is encoded as 

1/r, Where represents the turning radius in meters. To 

prevent singularity issues when driving straight, 1/r is 

utilized instead of r, as the turning radius for driving 

straight is infinite. This encoding smoothly transitions 

from left turns to right turns through zero. The training 

data consists of a single dataset [2].  

  
Figure 1: Data collection system.  

The left and right cameras provide images of two 

specific features from the center. Changes between the 

camera and rotation are equivalent to changing the 

image from the nearby camera. Since we lack 3D 

modeling skills, we estimate the change by assuming 

all points below the horizontal line are on the ground 

and all points above the horizon are far away. This 

approach works well on flat ground but distorts 

ground-based objects like cars, poles, trees, and 

buildings. Fortunately, these distortions don't 

significantly impact network training. The vehicle's 

video controlled navigation system returns the car to 

its target position and orientation within two seconds.  

To achieve this, we employ a Convolutional Neural 

Network (CNN) in our autonomous vehicle training 

system, as shown in Figure 2. The CNN simulates the 

proposed rule by processing images and adjusting its 

weights to match the desired output. This is done using 

the backpropagation algorithm, implemented in the 

Torch 7 machine learning package.  

  
Figure 2: Training the neural network.  



© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 

 

IJIRT 167187 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 528 

IV. NETWORK ARCHITECTURE 
 

The train our network weights to minimize the 

maximum error between the control command 

executed by the network and the command issued by 

the human driver or the modified command for off-

center and rotating images (see Section 5.2). Our 

storage network is illustrated in Figure 4. The network 

consists of nine components, including a standard 

level, five certified components, and three fully 

integrated components. The input image is segmented 

in the YUV plane and passed through the array. The 

first stage of the network is to create standard images. 

The standard is robust and not adapted to learning. 

Network normalization enables regular programs to be 

customized with network mode and prioritized via the 

GPU. The validation component is designed for 

performance and is selected through a series of 

multivariate tests. We employ an irregular 

convolutional neural network with a 2×2 pitch and 5×5 

and 5×5 variable resolution in the first three layers, and 

a 3×3 size in the last two layers.  

Follow a five-phase verification and three-phase 

integration process, leading to the radio variable 

output control value. All connected components are 

designed to work as the controller, but when training 

the system end-to-end, we find that it is challenging to 

make a clear distinction between the components of 

the network that essentially act as attractors to get the 

system to work, and those that act as controllers [3].  
 

V. DATA COLLECTION 
 

The training data was gathered by driving an electric 

vehicle on various roads and in different weather 

conditions. Most of the data was collected in central 

New Jersey, with additional data from Illinois, 

Michigan, Pennsylvania, and New York. The dataset 

includes a range of roads, such as freeways (paved and 

unpaved), residential streets with parking, tunnels, and 

unpaved freeways.   

Data was collected in various weather conditions, 

including fair weather, cloudy, snow, and rain, during 

both day and night. In some cases, the low-lying sun 

caused light to reflect off the road and scatter through 

the glass.   

Data was obtained using wireline measurement 

instruments, specifically a 2016 Lincoln MKZ or a 

2013 Ford Focus, with cameras mounted in the same 

location.   

The system is car-agnostic, allowing it to be used with 

any vehicle make or model. Drivers were instructed to 

exercise caution when necessary, driving normally 

otherwise. By March 28, 2016, approximately 72 

hours of driving data had been collected.  

The function takes in a dataset data and an optional 

parameter display. It creates a histogram of the 

steering angles in the dataset using np. histogram, and 

then plots the histogram and a line indicating the target 

number of samples per bin if display is True.  

  
Figure 3: Data collection  

The code is designed to balance a dataset by removing 

excess images from each bin of steering angles. The 

balance data function is called again at the end to 

ensure the dataset is balanced after removing images 

[4].  

  
Figure 4: Remove data 

 

Reprocessing data: 

The augment image function applies random image 

augmentations to an input image, including panning, 

zooming, brightness adjustment, and flipping, and 

returns the augmented image along with the modified 

steering angle. The function reads an image from a file 

path, then randomly applies transformations with a 

50% chance of execution for each. These 

transformations include panning by up to 10% in both 
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x and y directions, zooming by up to 20%, adjusting 

brightness by a random factor between 0.2 and 1.2, and 

flipping the image horizontally. The steering angle is 

also modified by negating its value when the image is 

flipped. The function returns the augmented image and 

the modified steering angle, which can be used to 

increase the diversity of a dataset and improve the 

robustness of machine learning models.  

  
Figure 5: CROPPED IMAGE  

  

The preprocess function takes an image as input and 

applies a series of transformations to prepare it for use 

in a machine learning model. First, it crops the image 

to remove the top 60 rows and bottom 25 rows, 

focusing on the central region of the image. Next, it 

converts the image from RGB to YUV color space, 

which is more suitable for image processing tasks. The 

image is then blurred using a Gaussian filter to reduce 

noise and smooth out the features. After that, the 

image is resized to a fixed size of 200x66 pixels to 

ensure consistency across all images. Finally, the pixel 

values are normalized by dividing by 255, which helps 

to prevent features with large ranges from dominating 

the model. The preprocessed image is then returned, 

ready for use in training or testing a machine learning 

model [5].  

  
Figure 6: PREPROCESSED IMAGE  

  

VI. MODEL 

 

The first select relevant data from our annotated 

dataset, which includes road type, weather conditions, 

and driver activities. The  only use data where the 

driver is staying in a lane and discard the rest. The 

video is then sampled at 10 frames per second (FPS). 

A higher sampling rate would result in redundant, 

similar images, providing little useful information [6].  

 
Figure 7: CNN architecture.  

The network has about 27 million connections and 250 

thousand parameters.  

Normalization Layer: The first step is to normalize the 

input data. This is done by dividing the input values by 

127.5 and then subtracting 1. This normalization step 

helps to scale the input values to a range that is suitable 

for the model to process.  

Convolutional Layers: The next step is to apply three 

convolutional layers with the following specifications:  

• Layer 1: 24 filters, 5x5 kernel, stride 2 • Layer 2: 

36 filters, 5x5 kernel, stride 2  

• Layer 3: 48 filters, 5x5 kernel, stride 2  

These convolutional layers are designed to extract 

features from the input data. The 5x5 kernel size is 

used to capture local patterns in the data, and the stride 

of 2 is used to down sample the feature maps.  

• Layer 4: 64 filters, 3x3 kernel, stride 1  

• Layer 5: 64 filters, 3x3 kernel, stride 1  

These convolutional layers are designed to extract 

more complex features from the data. The 3x3 kernel 

size is used to capture smaller patterns in the data, and 

the stride of 1 is used to preserve the spatial resolution 

of the feature maps.  

Flatten Layer: The next step is to flatten the output of 

the convolutional layers into a 1D feature vector. This 

is done to prepare the data for the fully connected 

layers.  
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Fully Connected Layers: The next step is to apply three 

fully connected layers with the following 

specifications:  

• Layer 6: 100 neurons  

• Layer 7: 50 neurons  

• Layer 8: 10 neurons  

These fully connected layers are designed to learn 

complex relationships between the input features and 

the output steering angle.  

Final Output Layer: The final step is to apply a single 

neuron output layer that produces the predicted 

steering angle. This layer takes the output of the 

previous fully connected layer and produces a single 

value that represents the predicted steering angle [7].  

  
Figure 8: MODEL SEQUENCE   

The training process and validate by using the 

epochs. Here we perform cycle of 30 epochs and each 

batch contains 100 elements which helps in decreasing 

the loss which is shown in fig.  

  
Figure 9: EPOCH WITH LOSS VALUE 

  

VII. RESULT 

 

Simulate driving scenarios using a Convolutional 

Neural Network (CNN) architecture. The CNN model 

employs the Exponential Linear Unit (ELU) activation 

function, which is known for its ability to introduce 

non-linearity into the model. The mean squared error 

(MSE) loss function is used to validate the data. As 

expected, the performance of the model improves after 

training the data. Notably, the values of the trained and 

tested data are very close, leading us to conclude that 

the model generalizes well and captures the underlying 

patterns in the data.  

  
Figure 10: TRAINING AND VALIDATION  

The results show that the car is successfully 

running on its track, with a speedometer visible in the 

right-hand side corner. The trained model is able to 

control the car effectively in different, unknown 

tracks, consistently completing laps without failing. 

Furthermore, with a larger training dataset that 

includes a variety of scenarios, the model's ability to 

remain in autonomous mode is expected to increase 

[8].  

  
Figure 11: DRIVING IN AUTONOMOUS MODE  
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VIII. CONCLUSION 

 

This paper presents a methodology for self-governing 

driving under stimulated conditions, leveraging deep 

learning strategies and end-to-end learning to achieve 

vehicle cloning. The Nvidia neural network serves as 

the core framework for the driver cloning algorithm, 

comprising five convolutional layers, one 

normalization layer, and four fully connected layers. 

The output of the model is the steering angle. The 

results demonstrate successful autonomous driving 

along a predefined stimulated path, using smaller 

datasets for training. Notably, all the data required to 

train the system are independently created in manual 

mode, thereby generating their own databases. To 

improve our method, we can focus on enhancing 

stimulus generalization. The limited generalizability 

of our approach is attributed to the small database, 

which restricts its applicability to real-world scenarios. 

Nevertheless, the car is currently performing well in 

autonomous mode along a predefined stimulated 

route.   

REFERENCE 

 

[1] Nicolas Gallardo, “Autonomous Decision 

Making for a Driver-less Car”, 2017.  

[2] Naveen S Yeshodara, 2Nikhitha Kishore, “Cloud 

Based Self Driving Cars”, 2014.  

[3] Joshi and M. R. James, “Generation of accurate 

lane-level maps from coarse prior maps and 

lidar,” 2014.  

[4] Qudsia Memon, Shahzeb Ali, Wajiha Shah, “Self-

Driving and DriverRelaxing Vehicle”, 2016.  

[5] Dean A. Pomerleau. ALVINN, an autonomous 

land vehicle in a neural network. Technical report, 

Carnegie Mellon University, 1989.  

[6] A. S. I. R. Jean-Francois Bonnefon, "The social 

dilemma of autonomous vehicles”, 2015.   

[7] U. o. M. Centre for Sustainable Systems, 

"Autonomous Vehicles Factsheets”, 2018.   

[8] N. Corporation, "End to End Learning of Self-

Driving Cars”, 2016.  


