
© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167376 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 903 

Leveraging Co-Existence Features to Improve Android 

Malware Detection 
 

 

1Dongari Sai, 2Dr.K.Santhi Sree  

1MCA Student, Department of Information Technology, Jawaharlal Nehru Technological 

University, India 
2 Professor of CSE, Department of Information Technology, Jawaharlal Nehru Technological 

University, India 

 

Abstract: This project examines Android malware 

detection using datasets such as Drebin, Malgenome, and 

CIC_MALDROID2020, which offer extensive API and 

Permission data for in-depth analysis. We employed 

several machine learning models for classification, 

including Logistic Regression, SVM, KNN, Random 

Forest, Decision Tree, and a Stacking Classifier that 

blends Random Forest, MLP, and LightGBM. The 

comprehensive methodology involves data 

preprocessing, model training, and performance 

evaluation to create highly effective detection models. 

These models enhance mobile security by improving 

malware threat detection and mitigation. Our findings 

are particularly valuable for professionals and 

researchers in mobile security. Additionally, we 

developed a user-friendly Flask framework with SQLite, 

enabling secure signup, sign-in, and user testing, thereby 

making the project more practical and robust for 

efficient user interactions. 

Index terms - co-existence, FP-growth, machine learning, 

malware. 

1. INTRODUCTION 

 

The smartphone market is rapidly growing, with 

global sales projected to exceed 351 million units by 

2024. Android, with over 2.5 billion users, faces 

significant security challenges due to its open-source 

nature. By early 2021, the Google Play Store had over 

3.43 million apps, and third-party markets like 

AppBrain and AppChina also host apps, often with 

higher risks of malware. Research shows 22% of 

Google Play apps and 50% of AppChina apps were 

malicious. Traditional signature-based methods 

struggle with obfuscated malware. Machine learning, 

utilizing static and dynamic analysis with advanced 

feature selection, provides a more effective solution 

for detecting malware. 

2.LITERATURE SURVEY 

Nearly everyone now uses internet-connected devices, 

which enhance convenience but also pose security 

risks. Machine learning has shown promise for 

malware detection in labs but struggles in real-world 

scenarios, with performance dropping significantly. 

The surge in smartphone use, particularly Android, has 

increased mobile malware. Traditional defenses are 

challenged by rapidly evolving threats. Analysis of 

over 1,200 malware samples revealed their evolution 

to bypass detection, with existing security solutions 

detecting only 20.2% to 79.6% of threats. 

Our method, which uses permissions and API calls, 

achieved 97.25% accuracy and 95.87% after feature 

optimization. DREBIN, a lightweight on-device tool, 

detected 94% of malware with minimal false positives 

and analyzed apps in about 10 seconds, proving 

effective and practical for real-world use. 

 

3.METHODOLOGY 

i) Proposed Work: 

The proposed machine learning system detects 

Android malware by integrating permissions and 

APIs, showing superior accuracy on datasets like 

Drebin, CIC_MALDROID2020, and Malgenome. It 

includes a Stacking Classifier combining Random 

Forest, MLP, and LightGBM for improved detection. 

A Flask framework with SQLite supports secure user 

management, enhancing usability and robustness. 

ii) System Architecture: 

The system starts with a dataset of Android 

applications, with features extracted from different co-

existence combinations. This dataset is divided into a 

training set and a test set. Machine learning models 



© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167376 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 904 

(KNN, SVM, RF, DT, LR, and a Stacking Classifier) 

are trained on the training set to classify apps as 

malicious or benign, and the test set is used to assess 

the models' performance on new applications.

 

Fig 1 Proposed architecture 

iii) Dataset collection: 

DREBIN  

• • Drebin is a key dataset in Android malware 

research, featuring a wide array of benign and 

malicious apps. Its extensive and varied nature 

makes it a valuable benchmark for robust 

malware detection models. • We used the Drebin 

dataset with multiple feature combinations. • The 

top 5 rows of data for each feature combination 

are shown below, including the number of 

columns. 

 

Fig 2 Drebin dataset 

MALGENOME  

Malgenome specializes in Android malware, offering 

a targeted set of malware samples that complements 

the Drebin dataset. It aids in research and model 

development with its diverse malware instances. 

We utilized the Malgenome dataset with various 

feature combinations and show the top 5 rows of data 

for each, along with the number of columns 

 
Fig 3 Malgenome 

CIC_MALDROID2020  

• CIC_MALDROID2020, from the Canadian 

Institute for Cybersecurity, is notable for its 

extensive size, recent updates, and comprehensive 

diversity. 

•  We used the CIC_MALDROID2020 dataset with 

different feature combinations. 

• The top 5 rows of data for each feature 

combination are shown below, along with the 

number of columns.. 

 
Fig 4 CIC_MALDROID2020 

iv) Data Processing: 

Data processing converts raw data into valuable 

information through collection, organization, 

cleaning, analysis, and conversion into formats like 

graphs. Methods include manual, mechanical, and 

electronic approaches. Automated solutions, such as 

software, are essential for turning large data volumes 

into actionable insights to improve decision-making 

and operations 



© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167376 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 905 

v) Feature selection: 

Feature selection identifies the most relevant and non-

redundant features for model building. With growing 

dataset sizes, reducing dimensions is crucial to 

improve model performance and lower computational 

costs. This process, a key part of feature engineering, 

involves eliminating unnecessary features to enhance 

the efficiency and accuracy of machine learning 

models. 

vi) Algorithms: 

Logistic Regression is a classification algorithm that 

uses the sigmoid function to convert input features into 

a probability score between 0 and 1. A threshold is 

then applied to classify inputs into categories, with the 

model adjusting coefficients during training to 

optimize accuracy.

 

Fig 5 Logistic regression 

A Support Vector Classifier (SVC) finds the optimal 

hyperplane to separate data classes while maximizing 

the margin between them. It uses support vectors to 

ensure accurate classifications for both binary and 

multi-class problems.

Fig 6 SVM 

K-Nearest Neighbors (KNN) is a simple, flexible 

algorithm for classification and regression. It predicts 

outcomes based on the majority vote or average of the 

K nearest data points, but can be sensitive to the choice 

of K and high-dimensional data. 

Fig 7 KNN 

Random Forest is an ensemble method that improves 

predictions by combining multiple decision trees. It 

trains trees on random data subsets and averages their 

predictions, enhancing accuracy, reducing overfitting, 

and offering robust performance for both classification 

and regression tasks.

 

Fig 8 Random forest 

A Decision Tree is a machine learning model that 

classifies or predicts outcomes by splitting data based 

on key features, creating an interpretable tree-like 

structure. 

 

Fig 9 Decision tree 

A Stacking Classifier enhances prediction accuracy by 

combining multiple base models, like Random Forest, 



© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167376 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 906 

MLP, and LightGBM. Predictions from these models 

are used as inputs for a meta-learner, which integrates 

them to produce a final, more precise prediction. 

 

Fig 10 Stacking classifier 

4.EXPERIMENTAL RESULTS 

Precision: Precision measures the proportion of true 

positive predictions among all positive predictions 

made. It is calculated using the formula: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

 

 

Fig 11 Precision comparison graph 

Recall: Recall measures a model's ability to identify all 

relevant instances of a class. It is the ratio of true 

positives to the sum of true positives and false 

negatives, indicating the model's completeness in 

capturing the target class.

 

 

Fig 12  Recall comparison graph 

Accuracy: Accuracy is the ratio of correctly predicted 

outcomes to the total predictions, reflecting a model's 

overall performance in a classification task. 

 

 

Fig 13 Accuracy graph 

F1 Score: The F1 Score is the harmonic mean of 

precision and recall, balancing false positives and 

negatives, and is ideal for imbalanced datasets. 

 

 

Fig 14 F1Score 



© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167376 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 907 

 

Fig 15 Performance Evaluation  

 

Fig 16 Home page 

 

Fig 17 Signin page 

 

Fig 18 Login page 

 

Fig 19 User input 



© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167376 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 908 

 

Fig 20 Predict result for given input 

5.CONCLUSION 

The project highlighted the effectiveness of machine 

learning in detecting Android malware, with the 

stacking classifier outperforming individual models 

and enhancing accuracy. Flask and SQLite were 

integrated to offer a user-friendly interface for 

efficient testing and predictions. The project 

emphasized the need to combine API and Permission 

features for better detection and noted varying model 

performance across datasets like Drebin, Malgenome, 

and CIC_MALDROID2020, underscoring the 

importance of careful dataset selection. The models 

achieved a balance between accuracy and minimizing 

false positives, reducing the risk of misclassifying 

legitimate apps. 

6.FUTURE SCOPE 

Further research should aim to enhance real-time 

detection by continuously analyzing dynamic features 

to better address evolving malware threats. 

Techniques like mutual information or recursive 

feature elimination can refine feature selection, 

improving model efficiency and accuracy. Adding 

behavioral anomaly detection could provide extra 

security by identifying deviations from normal app 

behavior. Adapting the system to incorporate new 

threat intelligence and update models is crucial for 

maintaining effectiveness. Expanding to cross-

platform malware detection, including iOS, would 

offer a more comprehensive mobile security solution. 

REFERENCES 

 [1] H. Menear. (2021). IDC Predicts Used 

Smartphone Market Will Grow 11.2% by 2024. 

Accessed: Oct. 30, 2022. [Online]. Available: 

https://mobile-magazine.com/mobile-operators/idc-

predicts-usedsmartphone-market-will-grow-112-

2024?page=1  

[2] D. Curry. (2022). Android Statistics. Accessed: 

Oct. 30, 2022. [Online]. Available: 

https://www.businessofapps.com/data/android-

statistics/  

[3] O. Abendan. (2011). Fake Apps Affect Android Os 

Users. Accessed: Oct. 30, 2022. [Online]. Available: 

https://www.trendmicro.com/ vinfo/us/threat-

encyclopedia/web-attack/72/fake-apps-affect-

android-osusers  

[4] C. D. Vijayanand and K. S. Arunlal, ‘‘Impact of 

malware in modern society,’’ J. Sci. Res. Develop., 

vol. 2, pp. 593–600, Jun. 2019.  

[5] M. Iqbal. (2022). App Download Data. Accessed: 

Oct. 30, 2022. [Online]. Available: 

https://www.businessofapps.com/data/app-statistics/  

[6] K. Allix, T. Bissyand, Q. Jarome, J. Klein, R. State, 

and Y. L. Traon, ‘‘Empirical assessment of machine 

learning-based malware detectors for android,’’ 

Empirical Softw. Eng., vol. 21, pp. 183–211, Jun. 

2016.  

[7] Y. Zhou and X. Jiang, ‘‘Dissecting Android 

malware: Characterization and evolution,’’ in Proc. 

IEEE Symp. Secur. Privacy, May 2012, pp. 95–109.  

[8] J. Scott. (2017). Signature Based Malware 

Detection is Dead. Accessed: Oct. 30, 2022. [Online]. 

Available: 

https://icitech.org/wpcontent/uploads/2017/02/ICIT-

Analysis-Signature-Based-MalwareDetection-is-

Dead.pdf 

[9] Q. M. Y. E. Odat. Accessed: Dec. 27, 2022. 

[Online]. Available: https://github.com/esraa-

cell28/a-novel-machine-learning-approach-

forandroid-malware-detection-based-on-the-co-

existence  

[10] S. R. Tiwari and R. U. Shukla, ‘‘An Android 

malware detection technique based on optimized 

permissions and API,’’ in Proc. Int. Conf. Inventive 

Res. Comput. Appl. (ICIRCA), Jul. 2018, pp. 258–

263.  

[11] (2018). Dex2jar—Tools To Work With 

Android.dex & Java.Class Files. Accessed: Oct. 30, 

2022. [Online]. Available: 

https://kalilinuxtutorials.com/dex2jar-android-java/  

[12] Androzoo. Accessed: Jul. 30, 2022. [Online]. 

Available: https://androzoo.uni.lu/  

[13] D. Arp, M. Spreitzenbarth, M. Hubner, H. 

Gascon, and K. Rieck, ‘‘Drebin: Effective and 

https://www.businessofapps.com/data/android-statistics/
https://www.businessofapps.com/data/android-statistics/
https://www.businessofapps.com/data/app-statistics/
https://icitech.org/wpcontent/uploads/2017/02/ICIT-Analysis-Signature-Based-MalwareDetection-is-Dead.pdf
https://icitech.org/wpcontent/uploads/2017/02/ICIT-Analysis-Signature-Based-MalwareDetection-is-Dead.pdf
https://icitech.org/wpcontent/uploads/2017/02/ICIT-Analysis-Signature-Based-MalwareDetection-is-Dead.pdf
https://kalilinuxtutorials.com/dex2jar-android-java/
https://androzoo.uni.lu/


© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167376 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 909 

explainable detection of Android malware in your 

pocket,’’ in Proc. NDSS, Feb. 2014, pp. 23–26.  

[14] Virusshare. accessed: Jul. 30, 2022. [Online]. 

Available: https://virusshare.com/  

[15] H. Cheng, X. Yan, J. Han, and C.-W. Hsu, 

‘‘Discriminative frequent pattern analysis for effective 

classification,’’ in Proc. IEEE 23rd Int. Conf. Data 

Eng., Apr. 2007, pp. 716–725. 

[16] M. Parkour. Contagio Mini-Dump. accessed: Jul. 

30, 2022. [Online]. Available: http://contagiomini 

dump. blogspot.it/  

[17] Malgenome Project. accessed: Jul. 30, 2022. 

[Online]. Available: http://www.Malgenomeproject. 

org  

[18] C.-F. Tsai, Y.-C. Lin, and C.-P. Chen, ‘‘A new 

fast algorithms for mining association rules in large 

databases,’’ in Proc. IEEE Int. Conf. Syst., Man 

Cybern. San Francisco, CA, USA: Morgan Kaufmann, 

Oct. 1994, pp. 487–499.  

[19] A. Lab. (2017). Amd Dataset. Accessed: Oct. 30, 

2022. [Online]. Available: https://www.kaggle. 

com/datasets/blackarcher/malware-dataset  

[20] V. Avdiienko, ‘‘Mining apps for abnormal usage 

of sensitive data,’’ in Proc. IEEE/ACM 37th IEEE Int. 

Conf. Softw. Eng., vol. 1, May 2015, pp. 426–436.  

https://virusshare.com/
http://contagiomini/

