
 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100103 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 223

NETWORK SECURITY USING GRAPH THEORY

Sweety Sen, Sonali Samanta

B.Tech, Information Technology,

Dronacharya College of Engineering, Gurgaon , India

Abstract- Network monitoring is a primary

requirement for any network security. For

monitoring network activities, we present the concept

of Traffic Dispersion Graphs which can help easy

identification of access patterns over a network. We

also define an adjacency matrix attack graph to

analyze and locate potential risks to protect critical

network systems against multi step attacks. We

suggest optimal solutions and configurations to next

generation malware filter, based on graph-theoretic

concepts to assess the importance of individual

routers within the network, given a traffic pattern.

I. INTRODUCTION
In today’s globalized world, each and every

activity is interlinked in one way or the other.

Through the course of this paper we shall be

analyzing computer networks, the flow of traffic or

data from one computer to another and finally

understand how this data can be at danger and how

can it be saved? We assume every computer to be a

node in a graph. The connections between two

computers can be represented as an edge. The flow

of data is in the direction of these edges. We can

divide data into. A system of acknowledgment can

be developed once a packet reaches a node i.e. a

computer over the system.

II. HISTORY OF GRAPH THEORY
The origin of graph theory started with the problem

of Koinsber bridge, in 1735. This problem lead to

the concept of Eulerian Graph. Euler studied the

problem of Koinsberg bridge and constructed a

structure to solve the problem called Eulerian

graph. In 1840, A.F Mobius gave the idea of

complete graph and bipartite graph and Kuratowski

proved that they are planar by means of

recreational problems. The concept of tree, (a

connected graph

without cycles[7]) was implemented by Gustav

Kirchhoff in 1845, and he employed graph

theoretical ideas in the

calculation of currents in electrical networks or

circuits. In 1852, Thomas Gutherie found the

famous four color

problem. Then in 1856, Thomas. P. Kirkman and

William R.Hamilton studied cycles on polyhydra

and invented the

concept called Hamiltonian graph by studying trips

that visited certain sites exactly once. In 1913,

H.Dudeney

mentioned a puzzle problem. Eventhough the four

color problem was invented it was solved only after

a century by Kenneth Appel and Wolfgang Haken.

This time is considered as the birth of Graph

Theory.

III. TRAFFIC DISPERSION GRAPHS

A major problem these days is keeping a check on

the traffic and thus detecting applications that are

not required. This is because many applications

obfuscate their traffic using unregistered port

numbers or payload encryption. In this paper, we

propose the use of traffic Dispersion Graphs

(TDGs) as a way to monitor, analyze, and visualize

network traffic. TDGs model the social behavior of

hosts (“who talks to whom”), where the edges can

be defined to represent different interactions (e.g.

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100103 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 224

the exchange of a certain number or type of

packets). With the introduction of TDGs, we are

able to harness a wealth of tools and graph

modeling techniques from a diverse set of

disciplines. In this work, we propose a different

way of looking at network traffic that focuses on

network-wide interactions of hosts (as seen at a

router. We argue that there is a wealth of

information embedded in a TDG. For example, a

popular website will have a large in-degree, while

P2P hosts will be tightly connected. An edge can

represent the exchange of at least one packet. In

other words, a TDG can represent a particular type

of interaction, which gives them significant

descriptive power, as we discuss later in detail.

TDGs can be seen as the natural next step in the

progression of packet, flow, and host level

aggregation. This is because a flow aggregates a set

of packets, a host aggregates a set of flows

originating and terminating at the host and a graph

aggregates a group of hosts. Our main goal is to

propose TDGs as a diơerent way of modeling

traffic behavior, and show that they:

(a) have characteristic structure and provide

visualizations that can distinguish the nature of

some applications,

(b) describe traffic along new “dimension”, the

network-wide social behavior, which complements

traffic characterization at the packet, flow and host

levels.

TDG Formation: In this paper we focus on port-

based TDGs. Throughout the paper and unless

stated otherwise, when the legacy application for a

port uses TCP, we use the EFSP edge filter on the

corresponding destination port (e.g., TCP Port 25

for SMTP). When we examine UDP interactions,

we use the EFP edge filter on the destination port

of interest (e.g., UDP Port 53 for DNS). For ease of

presentation, we will refer to each port-based TDG

using the name of the dominant or well-known

application under that port. For example, the HTTP

TDGs is formed by using as edges all the TCP

SYN packets that have as destination port the

number 80. Since we use edge filtering by port

number, the TDGs capture aspects of any

application that uses these ports. We are fully

aware that many nonstandard applications, such as

P2P traƥc, use standard ports such as Port 80.

However, port-based filtering is consistent with our

use of TDGs as a monitoring tool. For example, if

at some point traffic at TCP Port 80 appears

significantly different, it could be:

(a) a new benign or malicious application tunneling

its traffic under that port, or

(b) a change in the behavior of the traditional

application.

TDG Visualization: Traditionally, visualization of

traffic in monitoring tools has largely been limited

to visualizing measures of traffic volumes on a per

flow basis. By contrast, we show that TDGs lend

themselves to simple graphical visualizations of

interaction patterns. We can identify several

distinctive structures and patterns in TDGs, which

are indicative of the behavior of different

applications. Node degrees - The degrees of

various nodes and their connectivity in a TDG

helps us in visually determining the type of

relationship between the nodes.

Conclusions and Future Work

Two essential features in network monitoring tools

dealing with vast amounts of network data are

aggregation and the ability to spot patterns. TDGs

represent a natural extension of previous

approaches that have aggregated at the packet,

flow, and host levels by aggregating across nodes.

The aggregation across nodes also reveals patterns

of social interaction across nodes that are specific

to applications. These interaction patterns or graph

structures can then be used to visually and

quantitatively monitor existing applications and

potentially detect concealed applications and mal-

code. Assuming that not many diverse applications

use the same port number, port-based TDGs can be

used in order to identify the type of application

utilizing a given port. We envisage such a system

working as follows. First, given any type of edge

filter (e.g., a port number) we first construct the

TDG. Next, using graph metrics, we identify the

nature of the application on that port (e.g., if is a

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100103 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 225

client-server, peer-to-peer, or malware application).

The filter selection can be:

(a) extracted automatically, triggered by an

anomalous behavior or

 (b) given a priori by the network administrator,

deviations can be used to trigger an alarm.

IV. INTRODUCTION TO ATTACK GRAPHS

Attack Graphs Generation: Several tools measure

point-based vulnerabilities on individual hosts.

However, vulnerabilities on a network being of

causal relationships actually arouse more impact

and damage to a whole network and persist longer

and more undetectable if we are unable to defend

against them in relevance. Attack Graphs of

Automated Generation encode the causal

relationships among vulnerabilities and tell whether

critical assets are secure enough against potential

multi-step combining attacks. The automated tool

succeeds to automate the generation of attack

graphs and releases administrators from error-prone

and arduous manual work. Therefore, it has

become a desirable tool for administrators to

analyze their networks, report potential risks and

protect their networked assets. But there is a

limitation to it, that is, the complexity problem,

regarding the size of the network and

vulnerabilities that exist in the network. In practice,

attack graphs always exceed human ability to

visualize, and understand.

A Motivating Example: A network configuration

shows connections between machines and

vulnerabilities’ distribution on a network. A type

graph tells the dependency or exploits relations

between vulnerabilities. Out of the two inputs, a

vulnerability-based attack graph can be drawn out,

in which a security-related vulnerability or

condition represents the system state, and an

exploit between vulnerabilities is modeled as a

transition. Figure illustrates a network

configuration example. The left side is the network

configuration graph. h1 is a machine

h1(v2,v3) h2(v1,v2)

 h3(v1,v3)

Having vulnerabilities v2 and v3 (these

vulnerabilities are generalized with simplified

notations, which do not express any concrete

vulnerability but conceptual ones mainly for their

relationships). h2 has vulnerabilities v1 and v2. h3

has vulnerabilities v1 and v3. The right side is a

type graph that expresses dependent relations

between vulnerabilities. v1 is the first vulnerability

that is assumed satisfied on its own. v2 is

dependent on the satisfaction of v1. v3 is dependent

on the satisfaction of v2. Therefore, v1 is the pre-

condition of v2; v2 is the precondition of v3. In

another way, we can say v2 is the post-condition of

v1 and v3 is the post-condition of v2. Here the

satisfied or satisfaction means that vulnerability on

a machine, whose preconditions have all been

satisfied by an attacker, can be reached or acquired

by the attacker now. Acquiring the vulnerability-

based attack graph has many approaches. However,

a direct way is to find all the attack paths, and then

uses them to set up an attack graph.

Adjacency Matrix Clustering: The rows and

columns of an adjacency matrix could be placed in

any order, without affecting the structure of the

attack graph the matrix represents. But orderings

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100103 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 226

that capture regularities in graph structure are

clearly desirable. In particular, we seek orderings

that tend to cluster graph vertices (adjacency matrix

rows and columns) by common edges (non-zero

matrix elements). This allows us to treat such

clusters of common edges as a single unit as we

analyze the attack graph (adjacency matrix). In

some cases, there might be network attributes that

allow us to order adjacency matrix rows and

columns into clusters of common attack graph

edges. For example, we might sort machine

vertices according to IP address, so that machines

in the same subnet appear in consecutive rows and

columns of the adjacency matrix.Unrestricted

connectivity within each subnet might then cause

fully connected (all ones) blocks of elements on the

main diagonal. In general, we cannot rely on a

priori ordering of rows and columns to place the

adjacency matrix into meaningful clusters. We

therefore apply a particular matrix clustering

algorithm [23] that is designed to form

homogeneous rectangular blocks of matrix

elements (row and column intersections). Here,

homogeneity means that within a block, there is a

similar pattern of attack graph edges (adjacency

matrix elements). This clustering algorithm

requires no user intervention, has no parameters

that need tuning, and scales linearly with problem

size. This algorithm finds the number of row and

column clusters, along with the assignment of rows

and columns to those clusters, such that the clusters

form regions of high and low densities. Numbers of

clusters and cluster assignments provide an

information-theoretic measure of cluster optimality.

The matrix clustering algorithm is based on ideas

from data compression, including the Minimum

Description Length principle [40], in which

regularity in the data can be used to compress it

(describe it in fewer symbols). Intuitively, one can

say that the more we compress the data, the better

we understand it, in the sense that we have better

captured its regularities.

Matrix Operations for Multi-Step Attacks: The

adjacency matrix shows the presence of each edge

in a network attack graph. Taken directly, the

adjacency matrix shows every possible single-step

attack. In other words, the adjacency matrix shows

attacker reachability within one attack step. As we

describe later, we can navigate the adjacency

matrix by iteratively matching rows and columns to

follow multiple attack steps. We can also raise the

adjacency matrix to higher powers, which shows

multi-step attacker reachability at a glance. For a

square (n × n) adjacency matrix A and a positive

integer p, then A
p
 is A raised to the power p: In

other words,

 A
p
 = (A AA…. A) p times ….(1)

Here, matrix multiplication is in the usual sense.

For example, an element of A
2

In Equation, the matching of rows and columns in

matrix multiplication (index k) corresponds to

matching steps of an attack graph. The summation

over k counts the numbers of matching steps. Thus,

each element of A
2
gives the number of 2-step

attacks between the corresponding pair (row and

column) of attack graph vertices. Similarly, A
3

gives all 3-step attacks; A
4
 gives all 4-step attacks,

etc.

For raising a (square) matrix to an arbitrary power,

we can improve upon naïve iterative multiplication.

This involves a spectral decomposition [41] of A.

An n × n matrix always has n Eigen values. These

form an n × n diagonal matrix D and a

corresponding matrix of nonzero columns V that

satisfies the Eigen value equation AV = VD. If the

n Eigen values are distinct, then V is invertible, so

that we can decompose the original matrix A as

 A =VDV
-1

 ……(2)

Here D is a diagonal matrix formed from the eigen

values of A, and the columns of V are the

corresponding eigenvectors of V.

It is then straightforward to prove that

 A
p
= VD

p

V
-1

, via V-1V = I. This product VD
p

V
-1

 is easy to compute since D
p
 is just the diagonal

matrix with entries equal to the p th power of those

of D, i.e.,

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100103 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 227

Attack Prediction: In our approach, we place

detected intrusions within the context of predictive

attack graphs based on known vulnerability paths.

We first compute a vulnerability-based attack

graph from knowledge of the network

configuration, attacker exploits, etc. We then form

the adjacency matrix A for the attack graph,

perform clustering on A. We then compute either

the transitive closure of A, or the multi-step

reachability matrix. Then, when an intrusion

alarm is generated, if we can associate it with an

edge (e.g., exploit) in the attack graph, we can thus

associate it with the corresponding element of any

of the following:

 The adjacency matrix A (for single-step

reachability).

 The multi-step reachability ma trix in Equation

(6) (for multi-step reachability).

 The transitive closure of A (for all-step

reachability). From this, we can immediately

categorize alerts based on the numbers of

associated attack steps. For example, if an

alarm occurs within a zero-valued region of the

transitive closure, we might conclude it is a

false alarm, i.e., we know it is not possible

according to the attack graph. Or, if an alarm

occurs within a single-step region of the

reachability matrix, we know that it is indeed

one of the single-step attacks in the attack

graph. Somewhere in between, if an alarm

occurs in a p-step region, we know the attack

graph predicts that it takes a minimum of p

steps to achieve such an attack. By associating

intrusion alarms with a reachability graph, we

can also predict the origin and impact of

attacks. That is, once we place intrusion alarm

on one of the vulnerability-based reachability

graphs, we can navigate the graph to do attack

prediction.

The idea is to project to the main diagonal of the

graph, in which row and column indices are equal.

Vertical projection (along a column) leads to attack

step(s) in the forward direction. That is, when one

project along a column to the main diagonal, the

resulting row gives the possible steps forward in

the attack. We can predict attack origin and impact

either (1) one step away, (2) multiple steps away

with the number of steps distinguished, or (3) over

all steps combined. Here are those 3 possibilities:

 When using the adjacency matrix A, non-zero

elements along the projected row show all

possible single steps forward. Projection also

can be done iteratively, to follow step-by-step

(one at a time) in the attack.

 When using the multi-step reachability matrix

in Equation (6), the projected row shows the

minimum number of subsequent steps needed

to reach another vertex. We can also iteratively

project, either choosing single-step elements

only, or “skipping” steps by choosing multi-

step elements.

 When using the transitive closure, the

projected row sh ows whether a particular

vertex can be subsequently reached in any

number of steps. Here, iterative projection is

not necessary, since transitive closure shows

reachability over all steps. We see that

projection along a column of a reachability

matrix predicts the impact (forward steps) of

an attack. Correspondingly, we can project

along a row (as opposed to a column) of such a

matrix to predict attack origin (backward

steps). In this case, when one projects along a

row to the main diagonal, the resulting column

gives the possible steps backward in the attack.

As before, we can predict attack origin using

either the adjacency matrix, the multi-step

reachability matrix, or the transitive closure

matrix. Just as for forward projection, this

gives either single-step reachability, multi-step

reachability, or all-step reachability, but this

time in a backward direction for predicting

attack origin.

Conclusion

In this paper, we defined the adjacency matrix

attack graphs, which are a novel concept in the

visualization and generation of attack graphs and

successfully avoid the complexity problem. In the

light of its definition, we formalized the adjacency

matrix attack graph-based probabilistic security

metric with the extension definition concerning

cycles. The advantage of our proposed approach is

that it simplifies the visualization to human eyes,

which replaces those cluttering edges of an attack

graph. It separates the complexity of attack graphs

into two fractions: the network connectivity

property and the interactions among an exploit

dependency attack graph. No matter how many

machines in a network, the visualization or

representation always is controlled within a certain

number of vulnerabilities and exploits. The

adjacency matrix attack graph also facilitates the

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100103 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 228

probabilistic computations without the exponential

explosion, the complexity of which is within O(n
2
).

V. MALWARE IDENTIFICATION
Once a system has been identified with

irregularities from the original work we can predict

an malware is trying to attack the system.

Computer networks have become an ubiquitous but

vulnerable aspect of corporate, university, and

government life. Yet the increased complexity of

computer networks combined with the ingenuity of

attacker’s means that they remain susceptible to

expensive attacks from worms, viruses, Trojans,

and other malicious software, which we simply

refer to as malware. Network traffic filtering is one

of many security methods available tone work

administrators. Network traffic filters provide

protection by sampling packets or sessions and

either comparing their contents to known malware

signatures or looking for anomalies likely to be

malware. Filtering capabilities have begun to be

integrated into routers themselves, so as to reduce

hardware deployment costs and to allow for more

adaptive security. Future traffic filters are expected

to be configurable, networked, and even

autonomous. Our objective in this paper is to

investigate the deployment and configuration issues

of such devices within an optimization framework.

Computer networks have become a ubiquitous but

vulnerable aspect of corporate, university, and

government life. Yet the increased complexity of

computer networks combined with the ingenuity of

attackers means that they remain susceptible to

expensive attacks from worms, viruses, Trojan’s,

and other malicious software, which we simply

refer to as malware [1]–[3]. Network traffic

filtering is one of many security methods available

to network administrators. Network traffic filters

provide protection by sampling packets or sessions

and either comparing their contents to known

malware signatures or looking for anomalies likely

to be malware. Filtering capabilities have begun to

be integrated into routers themselves, so as to

reduce hardware deployment costs and to allow for

more adaptive security [4]. Future traffic filters are

expected to be configurable, networked, and even

autonomous. Our objective in this paper is to

investigate the deployment and configuration issues

of such devices within an optimization framework.

Model and Problem Formulations: There are a lot

of goals and restrictions that a Computer network

administrator’s faces at the network security level

and the financial or at technical cost of achieving

that security level. We combine and express these

constraints and objectives within the four malware

filter placement problems evaluated in this paper.

We consider a network of configurable, networked

routers with traffic filtering capabilities which can

be dynamically and remotely set by a centralized

server. Some subsets of these routers are source

routers and another (potentially overlapping and

typically identical) subset is destination routers.

Other routers are core routers. We do not explicitly

consider the effectiveness of malware filters. We

assume that filtered packets are marked so that we

do not redundantly filter particular packets. In

addition, we assume that the network administrator

has full knowledge of the network traffic, possibly

with some delay. Finally, we do not consider how

the act of filtering malware will alter the quantity of

traffic on a link or the quantity of malware at future

routers because we assume that the proportion of

malware in the network is relatively low. Although

we will discuss here packet filtering, all of the

developed theory and results also apply to the

filtering of sessions.

Centrality Measures for Network Link

Assessment: We introduce two new centrality

measures within the context of communication

networks. Traditional centrality measures, as

described in [9], involve source-destination pairs,

but each pair is weighted identically. A more

relevant and accurate centrality measure would

weight source-destination pairs according to the

magnitude of traffic that travels between them.

Moreover, traditional centrality measures consider

every node to be a potential source and destination,

but this is not the case for core routers. Therefore,

we propose only considering those nodes that are in

fact

 sources and/or destinations (i.e. no core routers) in

our centrality calculation. Traffic betweenness

centrality (TBC) is betweenness centrality with the

above two

changes. Let R be a set of all vertices in an

undirected graph. Let S ʗ R contain all the sources,

D ʗR be the set of all destinations, and P be the set

of all source-destination pairs (s,d). The number of

shortest paths between s ε R and d ε R is σsd. The

number of these shortest paths that pass through

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100103 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 229

some r ε R is σsd(r). Moreover, the amount of traffic

between s and d is usd. TBC assumes that there are

multiple shortest paths between a source and

destination and that they are equally likely to be

used. TBC of a router r, denoted by CTB(r), is then

defined as the fraction of shortest paths of all

source- destination pairs that pass through a

particular router, with each source-destination pair

being weighted by its traffic magnitude.

CTB(r):=X(s,d)ε P usd σsd(r) σsd …. (1)

If at least one shortest path for any source-

destination pair passes through a given router r,

then CTB(r) > 0.

A special case would be based on stress centrality

and called traffic stress centrality (TSC). Here we

do not assume

that all shortest routes are used with equal

likelihood but rather that one is chosen. In this case

if a node is on this selected shortest route, then σsd=

1, otherwise it is 0. TSC of a router r is then

defined as :

CTS(r) :=X(s,d)εP usd σsd (r) ….(2)

There exists an intuitive but not immediately

obvious relationship between the traffic centrality

measures defined here and the actual traffic that

passes through a router. Assume that the traffic

between all source-destination pairs on this

network is routed using either (a) a load-balancing

shortest path routing scheme where all the packets

sent from a source node to a destination one are

equally likely to be delivered through multiple

shortest paths

between them or (b) a simple shortest path scheme

where all packets between the source and the

destination nodes are delivered consistently

through a single shortest route. Then, the amount of

traffic on a router r is equal to the TBC measure in

the case of routing scheme (a) and the TSC

measure in the case of scheme (b). These

relationships can easily be proved by comparing

the definitions of traffic centrality measures with

simple equations for traffic at routers under these

routing schemes. Traffic centrality measures

capture the importance of routers on a network, and

hence are helpful when defining objective functions

for malware filtering problems

VI. CONCLUSIONS AND FUTURE WORK

We have studied malware filter placement

problems from an optimization perspective. After

drawing the connection between traffic-weighted

centrality measures and traffic measurements at

routers, we chose a convex cost objective involving

centrality measures. The first optimization problem

we considered involves minimizing this cost

subject to sampling and effective sampling rate

constraints, as well as a constraint on the amount of

traffic that can be filtered network-wide. Next we

studied the case where instead of placing a hard

upper bound on the quantity of filtering, we assign

a cost to filtering and minimize a sum of it and the

cost metric derived earlier. We then minimized a

different cost metric involving a sum of filter

deployment and filtering costs less a utility measure

under the same constraints. We found exact or

approximate centralized and dynamic solutions to

these optimization problems and simulated the

resulting strategies. Network traffic data from the

Abilene dataset was used in these simulations. We

compared these strategies with benchmark

approaches to network traffic filtering. The

simulation results confirm that by applying

optimization tools we can achieve lower costs in a

variety of contexts and when traffic magnitudes

change rapidly. There are several obvious

extensions to

this work. The optimization problems developed

here should be solved in a decentralized manner for

increased reliability and security. Various update

algorithms could be considered when evaluating

decentralized solutions. A natural extension to this

paper would involve incorporating filter

effectiveness with Bayesian analysis. This would

al- low for a comparison between signature-based

and anomaly- based filters. Constraints on the

amount of signature-based and anomaly-based

filtering could be set. Finally, we are planning to

use the Abilene data toper- form more thorough

simulations with the realistic Network Security

Simulator (NeSSi).

REFERENCES

[1] P. Ammann, D. Wijesekera, and S. Kaushik.

Scalable, graph-based net- work vulnerability

analysis. In Proceedings of the 9th ACM

Conference on Computer and Communications

Security (CCS’02), 2002.

[2] R. Deraison. Nessus scanner, 1999. Available at

http://www.nessus.org.

[3] D. Farmer and E. Spafford. The COPS security

checker system. In USENIX Summer, pages 165–

170, 1990.

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100103 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 230

[4] S. Jajodia and S. Noel. Topological

vulnerability analysis: A powerful new approach

for network attack prevention, detection, and

response.

[5] In B. Bhattacharya, S. Sur-Kolay, S. Nandy,

and A. Bagchi, editors, Algorithms, Architectures,

and Information Systems Security. World

Scientific Press, 2007.

 [6] P. Mell, K. Scarfone, and S. Romanosky.

Common vulnerability scoring system. IEEE

Security & Privacy Magazine, 4(6):85–89, 2006

