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Abstract- Network monitoring is a primary 

requirement for any network security. For 

monitoring network activities, we present the concept 

of Traffic Dispersion Graphs which can help easy 

identification of access patterns over a network. We 

also define an adjacency matrix attack graph to 

analyze and locate potential risks to protect critical 

network systems against multi step attacks. We 

suggest optimal solutions and configurations to next 

generation malware filter, based on graph-theoretic 

concepts to assess the importance of individual 

routers within the network, given a traffic pattern. 

 

I. INTRODUCTION 
In today’s globalized world, each and every 

activity is interlinked in one way or the other. 

Through the course of this paper we shall be 

analyzing computer networks, the flow of traffic or 

data from one computer to another and finally 

understand how this data can be at danger and how 

can it be saved? We assume every computer to be a 

node in a graph. The connections between two 

computers can be represented as an edge. The flow 

of data is in the direction of these edges. We can 

divide data into. A system of acknowledgment can 

be developed once a packet reaches a node i.e. a 

computer over the system. 

II. HISTORY OF GRAPH THEORY 
The origin of graph theory started with the problem 

of Koinsber bridge, in 1735. This problem lead to 

the concept of Eulerian Graph. Euler studied the 

problem of Koinsberg bridge and constructed a 

structure to solve the problem called Eulerian 

graph. In 1840, A.F Mobius gave the idea of 

complete graph and bipartite graph and Kuratowski 

proved that they are planar by means of 

recreational problems. The concept of tree, (a 

connected graph  

without cycles[7]) was implemented by Gustav 

Kirchhoff in 1845, and he employed graph 

theoretical ideas in the  

calculation of currents in electrical networks or 

circuits. In 1852, Thomas Gutherie found the 

famous four color  

problem. Then in 1856, Thomas. P. Kirkman and 

William R.Hamilton studied cycles on polyhydra 

and invented the  

concept called Hamiltonian graph by studying trips 

that visited certain sites exactly once. In 1913, 

H.Dudeney  

mentioned a puzzle problem. Eventhough the four 

color problem was invented it was solved only after 

a century by Kenneth Appel and Wolfgang Haken. 

This time is considered as the birth of Graph 

Theory. 

 

III. TRAFFIC DISPERSION GRAPHS 

A major problem these days is keeping a check on 

the traffic and thus detecting applications that are 

not required. This is because many applications 

obfuscate their traffic using unregistered port 

numbers or payload encryption. In this paper, we 

propose the use of traffic Dispersion Graphs 

(TDGs) as a way to monitor, analyze, and visualize 

network traffic. TDGs model the social behavior of 

hosts (“who talks to whom”), where the edges can 

be defined to represent different interactions (e.g. 
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the exchange of a certain number or type of 

packets). With the introduction of TDGs, we are 

able to harness a wealth of tools and graph 

modeling techniques from a diverse set of 

disciplines. In this work, we propose a different 

way of looking at network traffic that focuses on 

network-wide interactions of hosts (as seen at a 

router. We argue that there is a wealth of 

information embedded in a TDG. For example, a 

popular website will have a large in-degree, while 

P2P hosts will be tightly connected. An edge can 

represent the exchange of at least one packet. In 

other words, a TDG can represent a particular type 

of interaction, which gives them significant 

descriptive power, as we discuss later in detail. 

TDGs can be seen as the natural next step in the 

progression of packet, flow, and host level 

aggregation. This is because a flow aggregates a set 

of packets, a host aggregates a set of flows 

originating and terminating at the host and a graph 

aggregates a group of hosts. Our main goal is to 

propose TDGs as a diơerent way of modeling 

traffic behavior, and show that they:  

(a) have characteristic structure and provide 

visualizations that can distinguish the nature of 

some applications,  

(b) describe traffic along new “dimension”, the 

network-wide social behavior, which  complements 

traffic characterization at the packet, flow and host 

levels. 

 

TDG Formation: In this paper we focus on port-

based TDGs. Throughout the paper and unless 

stated otherwise, when the legacy application for a 

port uses TCP, we use the EFSP edge filter on the 

corresponding destination port (e.g., TCP Port 25 

for SMTP). When we examine UDP interactions, 

we use the EFP edge filter on the destination port 

of interest (e.g., UDP Port 53 for DNS). For ease of 

presentation, we will refer to each port-based TDG 

using the name of the dominant or well-known 

application under that port. For example, the HTTP 

TDGs is formed by using as edges all the TCP 

SYN packets that have as destination port the 

number 80. Since we use edge filtering by port 

number, the TDGs capture aspects of any 

application that uses these ports. We are fully 

aware that many nonstandard applications, such as 

P2P traƥc, use standard ports such as Port 80. 

However, port-based filtering is consistent with our 

use of TDGs as a monitoring tool. For example, if 

at some point traffic at TCP Port 80 appears 

significantly different, it could be:  

(a) a new benign or malicious application tunneling 

its traffic under that port, or  

(b) a change in the behavior of the traditional 

application. 

 

 
 

 

TDG Visualization: Traditionally, visualization of 

traffic in monitoring tools has largely been limited 

to visualizing measures of traffic volumes on a per 

flow basis. By contrast, we show that TDGs lend 

themselves to simple graphical visualizations of 

interaction patterns. We can identify several 

distinctive structures and patterns in TDGs, which 

are indicative of the behavior of different 

applications. Node degrees - The degrees of 

various nodes and their connectivity in a TDG 

helps us in visually determining the type of 

relationship between the nodes. 

 

Conclusions and Future Work 

Two essential features in network monitoring tools 

dealing with vast amounts of network data are 

aggregation and the ability to spot patterns. TDGs 

represent a natural extension of previous 

approaches that have aggregated at the packet, 

flow, and host levels by aggregating across nodes. 

The aggregation across nodes also reveals patterns 

of social interaction across nodes that are specific 

to applications. These interaction patterns or graph 

structures can then be used to visually and 

quantitatively monitor existing applications and 

potentially detect concealed applications and mal-

code. Assuming that not many diverse applications 

use the same port number, port-based TDGs can be 

used in order to identify the type of application 

utilizing a given port. We envisage such a system 

working as follows. First, given any type of edge 

filter (e.g., a port number) we first construct the 

TDG. Next, using graph metrics, we identify the 

nature of the application on that port (e.g., if is a 
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client-server, peer-to-peer, or malware application). 

The filter selection can be:  

(a) extracted automatically, triggered by an 

anomalous behavior or  

 (b) given a priori by the network administrator, 

deviations can be used to trigger an alarm. 

 

IV. INTRODUCTION TO ATTACK GRAPHS 

 

Attack Graphs Generation: Several tools measure 

point-based vulnerabilities on individual hosts. 

However, vulnerabilities on a network being of 

causal relationships actually arouse more impact 

and damage to a whole network and persist longer 

and more undetectable if we are unable to defend 

against them in relevance. Attack Graphs of 

Automated Generation encode the causal 

relationships among vulnerabilities and tell whether 

critical assets are secure enough against potential 

multi-step combining attacks. The automated tool 

succeeds to automate the generation of attack 

graphs and releases administrators from error-prone 

and arduous manual work. Therefore, it has 

become a desirable tool for administrators to 

analyze their networks, report potential risks and 

protect their networked assets. But there is a 

limitation to it, that is, the complexity problem, 

regarding the size of the network and 

vulnerabilities that exist in the network. In practice, 

attack graphs always exceed human ability to 

visualize, and understand. 

 

A Motivating Example:  A network configuration 

shows connections between machines and 

vulnerabilities’ distribution on a network. A type 

graph tells the dependency or exploits relations 

between vulnerabilities. Out of the two inputs, a 

vulnerability-based attack graph can be drawn out, 

in which a security-related vulnerability or 

condition represents the system state, and an 

exploit between vulnerabilities is modeled as a 

transition. Figure illustrates a network 

configuration example. The left side is the network 

configuration graph. h1 is a machine  

h1(v2,v3)                        h2(v1,v2) 

                   h3(v1,v3)     

 

 

 

 

  
 

Having vulnerabilities v2 and v3 (these 

vulnerabilities are generalized with simplified 

notations, which do not express any concrete 

vulnerability but conceptual ones mainly for their 

relationships). h2 has vulnerabilities v1 and v2. h3 

has vulnerabilities v1 and v3. The right side is a 

type graph that expresses dependent relations 

between vulnerabilities. v1 is the first vulnerability 

that is assumed satisfied on its own. v2 is 

dependent on the satisfaction of v1. v3 is dependent 

on the satisfaction of v2. Therefore, v1 is the pre-

condition of v2; v2 is the precondition of v3. In 

another way, we can say v2 is the post-condition of 

v1 and v3 is the post-condition of v2. Here the 

satisfied or satisfaction means that vulnerability on 

a machine, whose preconditions have all been 

satisfied by an attacker, can be reached or acquired 

by the attacker now. Acquiring the vulnerability-

based attack graph has many approaches. However, 

a direct way is to find all the attack paths, and then 

uses them to set up an attack graph. 

 

 
 

Adjacency Matrix Clustering: The rows and 

columns of an adjacency matrix could be placed in 

any order, without affecting the structure of the 

attack graph the matrix represents. But orderings 
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that capture regularities in graph structure are 

clearly desirable. In particular, we seek orderings 

that tend to cluster graph vertices (adjacency matrix 

rows and columns) by common edges (non-zero 

matrix elements). This allows us to treat such 

clusters of common edges as a single unit as we 

analyze the attack graph (adjacency matrix). In 

some cases, there might be network attributes that 

allow us to order adjacency matrix rows and 

columns into clusters of common attack graph 

edges. For example, we might sort machine 

vertices according to IP address, so that machines 

in the same subnet appear in consecutive rows and 

columns of the adjacency matrix.Unrestricted 

connectivity within each subnet might then cause 

fully connected (all ones) blocks of elements on the 

main diagonal. In general, we cannot rely on a 

priori ordering of rows and columns to place the 

adjacency matrix into meaningful clusters. We 

therefore apply a particular matrix clustering 

algorithm [23] that is designed to form 

homogeneous rectangular blocks of matrix 

elements (row and column intersections). Here, 

homogeneity means that within a block, there is a 

similar pattern of attack graph edges (adjacency 

matrix elements). This clustering algorithm 

requires no user intervention, has no parameters 

that need tuning, and scales linearly with problem 

size. This algorithm finds the number of row and 

column clusters, along with the assignment of rows 

and columns to those clusters, such that the clusters 

form regions of high and low densities. Numbers of 

clusters and cluster assignments provide an 

information-theoretic measure of cluster optimality. 

The matrix clustering algorithm is based on ideas 

from data compression, including the Minimum 

Description Length principle [40], in which 

regularity in the data can be used to compress it 

(describe it in fewer symbols). Intuitively, one can 

say that the more we compress the data, the better 

we understand it, in the sense that we have better 

captured its regularities. 

 

 

 
 

Matrix Operations for Multi-Step Attacks: The 

adjacency matrix shows the presence of each edge 

in a network attack graph. Taken directly, the 

adjacency matrix shows every possible single-step 

attack. In other words, the adjacency matrix shows 

attacker reachability within one attack step. As we 

describe later, we can navigate the adjacency 

matrix by iteratively matching rows and columns to 

follow multiple attack steps. We can also raise the 

adjacency matrix to higher powers, which shows 

multi-step attacker reachability at a glance. For a 

square (n × n) adjacency matrix A and a positive 

integer p, then A
p
 is A raised to the power p: In 

other words, 

  A
p
 = (A AA…. A) p times            ….(1) 

Here, matrix multiplication is in the usual sense. 

For example, an element of A
2 

In Equation, the matching of rows and columns in 

matrix multiplication (index k) corresponds to 

matching steps of an attack graph. The summation 

over k counts the numbers of matching steps. Thus, 

each element of A
2
gives the number of 2-step 

attacks between the corresponding pair (row and 

column) of attack graph vertices. Similarly, A
3
 

gives all 3-step attacks; A
4
 gives all 4-step attacks, 

etc. 

For raising a (square) matrix to an arbitrary power, 

we can improve upon naïve iterative multiplication. 

This involves a spectral decomposition [41] of A. 

An n × n matrix always has n Eigen values. These 

form an n × n diagonal matrix D and a 

corresponding matrix of nonzero columns V that 

satisfies the Eigen value equation AV = VD. If the 

n Eigen values are distinct, then V is invertible, so 

that we can decompose the original matrix A as 

           A =VDV
-1

           ……(2) 

Here D is a diagonal matrix formed from the eigen 

values of A, and the columns of V are the 

corresponding eigenvectors of V.  

It is then straightforward to prove that 

                       A
p
= VD

p 

V
-1

, via V-1V = I. This product VD
p 

V
-1

 is easy to compute since D
p
 is just the diagonal 

matrix with entries equal to the p th power of those 

of D, i.e., 
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Attack Prediction: In our approach, we place 

detected intrusions within the context of predictive 

attack graphs based on known vulnerability paths. 

We first compute a vulnerability-based attack 

graph from knowledge of the network 

configuration, attacker exploits, etc. We then form 

the adjacency matrix A for the attack graph, 

perform clustering on A. We then compute either 

the transitive closure of A, or the multi-step 

reachability matrix.           Then, when an intrusion 

alarm is generated, if we can associate it with an 

edge (e.g., exploit) in the attack graph, we can thus 

associate it with the corresponding element of any 

of the following: 

 The adjacency matrix A (for single-step 

reachability).  

 The multi-step reachability ma trix in Equation 

(6) (for multi-step reachability). 

 The transitive closure of A (for all-step 

reachability). From this, we can immediately 

categorize alerts based on the numbers of 

associated attack steps. For example, if an 

alarm occurs within a zero-valued region of the 

transitive closure, we might conclude it is a 

false alarm, i.e., we know it is not possible 

according to the attack graph. Or, if an alarm 

occurs within a single-step region of the 

reachability matrix, we know that it is indeed 

one of the single-step attacks in the attack 

graph. Somewhere in between, if an alarm 

occurs in a p-step region, we know the attack 

graph predicts that it takes a minimum of p 

steps to achieve such an attack. By associating 

intrusion alarms with a reachability graph, we 

can also predict the origin and impact of 

attacks. That is, once we place intrusion alarm 

on one of the vulnerability-based reachability 

graphs, we can navigate the graph to do attack 

prediction. 

 

The idea is to project to the main diagonal of the 

graph, in which row and column indices are equal. 

Vertical projection (along a column) leads to attack 

step(s) in the forward direction. That is, when one 

project along a column to the main diagonal, the 

resulting row gives the possible steps forward in 

the attack. We can predict attack origin and impact 

either (1) one step away, (2) multiple steps away 

with the number of steps distinguished, or (3) over 

all steps combined. Here are those 3 possibilities: 

 When using the adjacency matrix A, non-zero 

elements along the projected row show all 

possible single steps forward. Projection also 

can be done iteratively, to follow step-by-step 

(one at a time) in the attack.  

 When using the multi-step reachability matrix 

in Equation (6), the projected row shows the 

minimum number of subsequent steps needed 

to reach another vertex. We can also iteratively 

project, either choosing single-step elements 

only, or “skipping” steps by choosing multi-

step elements.  

 When using the transitive closure, the 

projected row sh ows whether a particular 

vertex can be subsequently reached in any 

number of steps. Here, iterative projection is 

not necessary, since transitive closure shows 

reachability over all steps. We see that 

projection along a column of a reachability 

matrix predicts the impact (forward steps) of 

an attack. Correspondingly, we can project 

along a row (as opposed to a column) of such a 

matrix to predict attack origin (backward 

steps). In this case, when one projects along a 

row to the main diagonal, the resulting column 

gives the possible steps backward in the attack. 

As before, we can predict attack origin using 

either the adjacency matrix, the multi-step 

reachability matrix, or the transitive closure 

matrix. Just as for forward projection, this 

gives either single-step reachability, multi-step 

reachability, or all-step reachability, but this 

time in a backward direction for predicting 

attack origin. 

 

Conclusion 

In this paper, we defined the adjacency matrix 

attack graphs, which are a novel concept in the 

visualization and generation of attack graphs and 

successfully avoid the complexity problem. In the 

light of its definition, we formalized the adjacency 

matrix attack graph-based probabilistic security 

metric with the extension definition concerning 

cycles. The advantage of our proposed approach is 

that it simplifies the visualization to human eyes, 

which replaces those cluttering edges of an attack 

graph. It separates the complexity of attack graphs 

into two fractions: the network connectivity 

property and the interactions among an exploit 

dependency attack graph. No matter how many 

machines in a network, the visualization or 

representation always is controlled within a certain 

number of vulnerabilities and exploits. The 

adjacency matrix attack graph also facilitates the 
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probabilistic computations without the exponential 

explosion, the complexity of which is within O(n 
2
).  

 

V. MALWARE IDENTIFICATION 
Once a system has been identified with 

irregularities from the original work we can predict 

an malware is trying to attack the system. 

Computer networks have become an ubiquitous but 

vulnerable aspect of corporate, university, and 

government life. Yet the increased complexity of 

computer networks combined with the ingenuity of 

attacker’s means that they remain susceptible to 

expensive attacks from worms, viruses, Trojans, 

and other malicious software, which we simply 

refer to as malware. Network traffic filtering is one 

of many security methods available tone work 

administrators. Network traffic filters provide 

protection by sampling packets or sessions and 

either comparing their contents to known malware 

signatures or looking for anomalies likely to be 

malware. Filtering capabilities have begun to be 

integrated into routers themselves, so as to reduce 

hardware deployment costs and to allow for more 

adaptive security. Future traffic filters are expected 

to be configurable, networked, and even 

autonomous. Our objective in this paper is to 

investigate the deployment and configuration issues 

of such devices within an optimization framework.                    

Computer networks have become a ubiquitous but 

vulnerable aspect of corporate, university, and 

government life. Yet the increased complexity of 

computer networks combined with the ingenuity of 

attackers means that they remain susceptible to 

expensive attacks from worms, viruses, Trojan’s, 

and other malicious software, which we simply 

refer to as malware [1]–[3]. Network traffic 

filtering is one of many security methods available 

to network administrators. Network traffic filters 

provide protection by sampling packets or sessions 

and either comparing their contents to known 

malware signatures or looking for anomalies likely 

to be malware. Filtering capabilities have begun to 

be integrated into routers themselves, so as to 

reduce hardware deployment costs and to allow for 

more adaptive security [4]. Future traffic filters are 

expected to be configurable, networked, and even 

autonomous. Our objective in this paper is to 

investigate the deployment and configuration issues 

of such devices within an optimization framework. 

 

Model and Problem Formulations: There are a lot 

of goals and restrictions that a Computer network 

administrator’s faces at the network security level 

and the financial or at technical cost of achieving 

that security level. We combine and express these 

constraints and objectives within the four malware 

filter placement problems evaluated in this paper. 

We consider a network of configurable, networked 

routers with traffic filtering capabilities which can 

be dynamically and remotely set by a centralized 

server. Some subsets of these routers are source 

routers and another (potentially overlapping and 

typically identical) subset is destination routers. 

Other routers are core routers. We do not explicitly 

consider the effectiveness of malware filters. We 

assume that filtered packets are marked so that we 

do not redundantly filter particular packets. In 

addition, we assume that the network administrator 

has full knowledge of the network traffic, possibly 

with some delay. Finally, we do not consider how 

the act of filtering malware will alter the quantity of 

traffic on a link or the quantity of malware at future 

routers because we assume that the proportion of 

malware in the network is relatively low. Although 

we will discuss here packet filtering, all of the 

developed theory and results also apply to the 

filtering of sessions. 

 

Centrality Measures for Network Link 

Assessment: We introduce two new centrality 

measures within the context of communication 

networks. Traditional centrality measures, as 

described in [9], involve source-destination pairs, 

but each pair is weighted identically. A more 

relevant and accurate centrality measure would 

weight source-destination pairs according to the 

magnitude of traffic that travels between them. 

Moreover, traditional centrality measures consider 

every node to be a potential source and destination, 

but this is not the case for core routers. Therefore, 

we propose only considering those nodes that are in 

fact 

 sources and/or destinations (i.e. no core routers) in 

our centrality calculation. Traffic betweenness 

centrality (TBC) is betweenness centrality with the 

above two  

changes. Let R be a set of all vertices in an 

undirected graph. Let S ʗ R contain all the sources, 

D ʗR be the set of all destinations, and P be the set 

of all source-destination pairs (s,d). The number of 

shortest paths between s ε R and d ε R is σsd. The 

number of these shortest paths that pass through 
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some r ε R is σsd(r). Moreover, the amount of traffic 

between s and d is usd. TBC assumes that there are 

multiple shortest paths between a source and 

destination and that they are equally likely to be 

used. TBC of a router r, denoted by CTB(r), is then 

defined as the fraction of shortest paths of all 

source- destination pairs that pass through a 

particular router, with each source-destination pair 

being weighted by its traffic magnitude. 

 

CTB(r):=X(s,d)ε P usd σsd(r) σsd …. (1)  

If at least one shortest path for any source-

destination pair passes through a given router r, 

then CTB(r) > 0.  

A special case would be based on stress centrality 

and called traffic stress centrality (TSC). Here we 

do not assume  

that all shortest routes are used with equal 

likelihood but rather that one is chosen. In this case 

if a node is on this selected shortest route, then σsd= 

1, otherwise it is 0. TSC of a router r is then 

defined as :  

CTS(r) :=X(s,d)εP usd σsd (r)     ….(2)  

There exists an intuitive but not immediately 

obvious relationship between the traffic centrality 

measures defined here and the actual traffic that 

passes through a router. Assume that the traffic 

between all source-destination pairs on this 

network is routed using either (a) a load-balancing 

shortest path routing scheme where all the packets 

sent from a source node to a destination one are 

equally likely to be delivered through multiple 

shortest paths  

between them or (b) a simple shortest path scheme 

where all packets between the source and the 

destination nodes are delivered consistently 

through a single shortest route. Then, the amount of 

traffic on a router r is equal to the TBC measure in 

the case of routing scheme (a) and the TSC 

measure in the case of scheme (b). These 

relationships can easily be proved by comparing 

the definitions of traffic centrality measures with 

simple equations for traffic at routers under these 

routing schemes. Traffic centrality measures 

capture the importance of routers on a network, and 

hence are helpful when defining objective functions 

for malware filtering problems 

 

VI. CONCLUSIONS AND FUTURE WORK 

We have studied malware filter placement 

problems from an optimization perspective. After 

drawing the connection between traffic-weighted 

centrality measures and traffic measurements at 

routers, we chose a convex cost objective involving 

centrality measures. The first optimization problem 

we considered involves minimizing this cost 

subject to sampling and effective sampling rate 

constraints, as well as a constraint on the amount of 

traffic that can be filtered network-wide. Next we 

studied the case where instead of placing a hard 

upper bound on the quantity of filtering, we assign 

a cost to filtering and minimize a sum of it and the 

cost metric derived earlier. We then minimized a 

different cost metric involving a sum of filter 

deployment and filtering costs less a utility measure 

under the same constraints. We found exact or 

approximate centralized and dynamic solutions to 

these optimization problems and simulated the 

resulting strategies. Network traffic data from the 

Abilene dataset was used in these simulations. We 

compared these strategies with benchmark 

approaches to network traffic filtering. The 

simulation results confirm that by applying 

optimization tools we can achieve lower costs in a 

variety of contexts and when traffic magnitudes 

change rapidly. There are several obvious 

extensions to  

this work. The optimization problems developed 

here should be solved in a decentralized manner for 

increased reliability and security. Various update 

algorithms could be considered when evaluating 

decentralized solutions. A natural extension to this 

paper would involve incorporating filter 

effectiveness with Bayesian analysis. This would 

al- low for a comparison between signature-based 

and anomaly- based filters. Constraints on the 

amount of signature-based and anomaly-based 

filtering could be set. Finally, we are planning to 

use the Abilene data toper- form more thorough 

simulations with the realistic Network Security 

Simulator (NeSSi). 
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