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Abstract- This paper focuses mainly on the 

architecture of Intel’s 4th generation processors 

Haswell. The main aim is the extensive study of the 

architecture, instruction set, memory hierarchy and 

performance of the Haswell architecture. It also 

presents a comparison between Intel’s previous 

processors and Haswell processor architecture. This 

research paper talks about Haswell architecture’s 

battery life, graphics and security. 

Index Terms– processors, instruction set, memory 

hierarchy, graphics. 

I. INTRODUCTION 

Haswell is the first family of SoCs that have been 

tailored to take advantage of Intel’s 22nm 

FinFET process technology. While Ivy Bridge is 

also 22nm, Intel’s circuit design team sacrificed 

power and performance in favour of a swift 

migration to a process with a radically new 

transistor architecture. 

The Haswell family features a new CPU core, new 

graphics and substantial changes to the platform in 

terms of memory and power delivery and power 

management. All of these areas are significant from 

a technical and economic perspective and interact 

in various ways. However, the Haswell family 

represents a menu of options that are available for 

SoCs tailored to certain markets. Not every product 

requires graphics (e.g. servers), nor is a new power 

architecture desirable for cost optimized products 

(e.g. desktops). Architects will pick and choose 

from the menu of options, based on a variety of 

technical and business factors. 

The heart of the Haswell family is the eponymous 

CPU. The Haswell CPU core pushes beyond the 

PC market into new areas, such as the high-end of 

the emerging tablet market. Haswell SoCs are 

aimed at 10W, potentially with further power 

reductions in the future. The 22nm node enables 

this wider range, but Haswell’s design and 

architecture play critical roles in fully exploiting 

the benefits of the new process technology. 

The Haswell CPU boasts a huge number of 

architectural enhancements, with four extensions 

that touch every aspect of the x86 instruction set 

architecture (ISA). AVX2 brings integer SIMD to 

256-bit vectors, and adds a gather instruction for 

sparse memory accesses. The fused multiply-add 

extensions improve performance for floating point 

(FP) workloads, such as scientific computing, and 

nicely synergize with the new gather instructions. 

A small number of bit manipulation instructions aid 

cryptography, networking and certain search 

operations. Last, Intel has introduced TSX, or 

transactional memory, an incredibly powerful 

programming model for concurrency and multi-

threaded programming. TSX improves 

performance and efficiency of software by better 

utilizing the underlying multi-core hardware. 

Intel’s design philosophy emphasizes superb single 

core performance with low power. The new 

Haswell core achieves even higher performance 

than Sandy Bridge. The improvements in Haswell 

are concentrated in the out-of-order scheduling, 

execution units and especially the memory 

hierarchy. It is a testament to the excellent front-

end in Sandy Bridge that relatively few changes 

were necessary. The Haswell microarchitecture is a 

dual-threaded, out-of-order microprocessor that is 

capable of decoding 5 instructions, issuing 4 fused 

uops (micro operations) and dispatching 8 uops 

each cycle. The Haswell core is the basis of Intel’s 

upcoming generation of SoCs and will be used 

from tablets to servers, competing with AMD and a 

variety of ARM-based SoC vendors.  

II. HASWELL INSTRUCTION SET AND 

FRONT-END 

Haswell introduces a huge number of new 

instructions for the x86 ISA, that fall into four 

general families. The first is AVX2, which 

promotes integer SIMD instructions from 128-bits 

wide in SSE to 256-bits wide. The original AVX 

was a 256-bit extension using the YMM registers, 

but largely for floating point instructions. AVX2 is 

the complement and brings integer SIMD to the full 

YMM registers, along with some enhancements for 

128-bit operation. AVX2 also adds more robust and 

generalized support for vector permutes and shifts. 

Perhaps more importantly, AVX2 includes 16 new 

gather instructions, loads that can fetch 4 or 8 non-

contiguous data elements using special vector 

addressing for both integer and floating point (FP) 

SIMD. Gather is crucial for wider SIMD and 

substantially simplifies vectorizing code. Note that 

AVX2 does not include scatter instructions (i.e., 

vector addressed stores), because of complications 
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with the x86 memory ordering model and the 

load/store buffers. 

While AVX2 emphasizes integer SIMD, Haswell 

has huge benefits for floating point code. In 

addition to gather, Intel’s Fused Multiply Add 

(FMA) includes 36 FP instructions for performing 

256-bit computations and 60 instructions for 128-

bit vectors. As announced in early 2008, Intel’s 

FMA was originally architected for 4-operand 

instructions. However, the 22nm Ivy Bridge can 

perform register move instructions in the front-end 

through register renaming tricks, without issuing 

any uops. Intel’s architects determined that MOV 

elimination with FMA3 provides about the same 

performance as FMA4, but using denser and easier 

to decode instructions; hence the abrupt about face 

in late 2008. 

The third extension is 15 scalar bit manipulation 

instructions (known as BMI) that operate on 

general integer registers. These instructions fall 

into three general areas: bit field manipulations 

such as insert, shift and extract; bit counting such 

as leading zero count; and arbitrary precision 

integer multiply and rotation. The latter is 

particularly useful for cryptography. As an aside, 

Haswell also adds a big-endian move instruction 

(MOVBE) that can convert to and from traditional 

x86 little-endian format. MOVBE was introduced 

for Intel’s Atom, and is quite useful for embedded 

applications that deal with storage and networking, 

since TCP/IP is big-endian. 

The last and most powerful of Intel’s ISA 

extensions is TSX, which has been extensively 

discussed in a previous article on Haswell’s 

transactional memory. In short, TSX enables 

programmers to write parallel code that focuses on 

using synchronization for correctness, while the 

hardware optimizes the execution for performance 

and concurrency. Hardware Lock Elision (HLE) 

transparently provides the performance and 

throughput of fine-grained locking, even when 

programmers use coarse-grained locks. Most 

importantly, the hint prefixes are compatible with 

older processors. 

Restricted Transactional Memory (RTM) is an 

entirely new programmer interface that provides 

transactional memory to x86 developers. TM is far 

more useful than traditional lock-based 

synchronization, because transactions can protect 

more complex data structures and be composed 

across functions, modules and even applications. 

However, it does require linking new libraries 

using RTM and possibly rewriting software to get 

the full benefits. 

Both variants of TSX are tracked at 64B cache line 

granularity. Excessive conflicts due to transaction 

limits, false sharing, or data races can actually harm 

performance, so developers must judiciously adopt 

TSX. However, future implementations will most 

likely have fewer conflicts and be more flexible. 

Of these new instructions, the vast majority are 

simple instructions that decode into a single uop. 

However, the more complex ones such as gather 

and the TSX commit and abort are micro coded. 

Fundamentally, x86 is quite similar to RISC 

architectures in a number of dimensions. ALU 

operations are largely the same; there are only so 

many ways to do addition, subtraction and 

multiplication. However, the front-end is quite 

different and one of the most challenging aspects of 

modern x86 CPUs. The instruction caches are kept 

coherent with data caches, and the variable length 

instructions make decoding quite complex. x86 

instructions range in size from 1-15 bytes, with 

length-changing prefixes, inconsistent operand 

positions and complex micro coded instructions. 

Since the P6, these instructions have been 

transformed into more tractable fixed length uops 

that can be tracked by an out-of-order core. As with 

all architectures, the instruction stream is 

frequently interrupted by control flow such as 

conditional branches, jumps, calls and returns, 

which potentially redirect the instruction fetching 

and introduce bubbles into the pipeline. 

Sandy Bridge made tremendous strides in 

improving the front-end and ensuring the smooth 

delivery of uops to the rest of the pipeline. The 

biggest improvement was a uop cache that 

essentially acts as an L0 instruction cache, but 

contains fixed length decoded uops. The uop cache 

is virtually addressed and included in the L1 

instruction cache. Hitting in the uop cache has 

several benefits, including reducing the pipeline 

length by eliminating power hungry instruction 

decoding stages and enabling an effective 

throughput of 32B of instructions per cycle. For 

newer SIMD instructions, the 16B fetch limit was 

problematic, so the uop cache synergizes nicely 

with extensions such as AVX. 
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Fig 1. Haswell and Sandy Bridge Front-end 

The most significant difference in Haswell’s front-

end is undoubtedly support for the various 

instruction set extensions outlined above. At a high 

level, instruction fetch and decode 

microarchitecture is largely similar to Sandy 

Bridge, as shown in Figure 1. There are a number 

of subtle enhancements, but the concepts and many 

of the details are the same. 

As to be expected, the branch prediction for 

Haswell has improved. Unfortunately, Intel was 

unwilling to share the details or results of these 

optimizations. The instruction cache is still 8-way 

associative, 32KB and dynamically shared by the 

two threads. The instruction TLBs are also 

unchanged, with 128 entries for 4KB page 

translations; the 4KB translations are statically 

partitioned between the two threads and 4-way 

associative. The 2MB page array is 8 entries, fully 

associative and replicated for each thread. 

Instruction fetching from the instruction cache 

continues to be 16B per cycle. The fetched 

instructions are deposited into a 20 entry 

instruction queue that is replicated for each thread, 

in both Sandy Bridge and Haswell. 

The Haswell instruction cache was optimized for 

handling misses faster. Speculative ITLB and cache 

accesses are supported with better timing to 

improve the benefits of prefetching, and the cache 

controller is much more efficient about handling 

instruction cache misses in parallel. 

As with previous generations, the decoding is 

performed by a complex decoder that emits 1-4 

fused uops and three simple decoders that emit a 

single fused uop in parallel. Alternatively, 

instructions requiring more than 4 uops are handled 

by microcode and block the conventional decoders. 

Macro-fusion can combine adjacent compare and 

branch instructions into a single uop, improving the 

potential throughput to 5 instructions per cycle. The 

decoding also contains the stack engine, which 

resolves push/pop and call/return pairs without 

sending uops further down the pipeline. 

The Haswell uop cache is the same size and 

organization as in Sandy Bridge. The uop cache 

lines hold upto 6 uops, and the cache is organized 

into 32 sets of 8 cache lines (i.e., 8 way 

associative). A 32B window of fetched x86 

instructions can map to 3 lines within a single way. 

Hits in the uop cache can deliver 4 uops/cycle and 

those 4 uops can correspond to 32B of instructions, 

whereas the traditional front-end cannot process 

more than 16B/cycle. For performance, the uop 

cache can hold micro coded instructions as a 

pointer to microcode, but partial hits are not 

supported. As with the instruction cache, the 

decoded uop cache is shared by the active threads. 

One difference in Haswell’s decoding path is the 

uop queue, which receives uops from the decoders 

or uop cache and also functions as a loop cache. In 

Sandy Bridge, the 28 entry uop queue was 

replicated for each thread. However, in Ivy Bridge 

the uop queue was combined into a single 56 entry 

structure that is statically partitioned when two 

threads are active. The distinction is that when a 

single thread is executing on Ivy Bridge or 

Haswell, the entire 56 entry uop buffer is available 

for loop caching and queuing, making better use of 

the available resources.  

III. OUT-OF-ORDER SCHEDULING 

Haswell’s out-of-order execution is where the 

microarchitecture becomes quite interesting and 

many changes are visible. Haswell is substantially 

wider than Sandy Bridge with more resources for 

dynamic scheduling. 

The first part of out-of-order execution is renaming. 

The renamer will map architectural source and 

destination x86 registers onto the underlying 

physical register files (PRFs) and allocates other 
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resources, such as load, store and branch buffer 

entries and scheduler entries. Lastly, uops are 

bound to particular ports for downstream 

execution. 

The renamer can take 4 fused uops out of the uop 

queue for a single thread, allocating the appropriate 

resources and renaming registers to eliminate false 

dependencies. Crucially, these 4 fused uops can 

map to more than just 4 execution pipelines. For 

example, 4 fused load+execute uops might map to 

8 actual uops, 4 loads and 4 dependent ALU 

operations. 

 

Haswell and Sandy Bridge Out-of-Order 

Scheduling 

Unlike Sandy Bridge, the renamer in Haswell and 

Ivy Bridge does not have to handle all register to 

register move uops. The front-end was enhanced to 

handle certain register move uops, which saves 

resources in the actual out-of-order execution by 

removing these uops altogether. 

The Haswell and Sandy Bridge core has unified 

integer and vector renaming, scheduling and 

execution resources. Most out-of-order resources 

are partitioned between two active threads, so that 

if one thread stalls, the other can continue to make 

substantial forward progress. In contrast, AMD’s 

Bulldozer splits the vector and integer pipelines. 

Each Bulldozer module includes two complete 

integer cores, but shares a single large vector core 

between the two. Conceptually, Bulldozer is 

dynamically sharing the floating point and vector 

unit, while having dedicated integer cores. 

The most performance critical resources in Haswell 

have all been expanded. The ROB contains status 

information about uops and has grown from 168 

uops to 192, increasing the out-of-order window by 

around 15%. Each fused uop occupies a single 

ROB entry, so the Haswell scheduling window is 

effectively over 300 operations considering fused 

loads and stores. The ROB is statically split 

between two threads, whereas other structures are 

dynamically shared. 

The physical register files hold the actual input and 

output operands for uops. The integer PRF added a 

modest 8 registers, bringing the total to 168. Given 

that AVX2 was a major change to Haswell, it 

should be no surprise that the number of 256-bit 

AVX registers grew substantially to accommodate 

the new integer SIMD instructions. Haswell 

features 24 extra physical registers for renaming 

YMM and XMM architectural registers. The 

branch order buffer, which is used to rollback to 

known good architectural state in the case of a 

misprediction is still 48 entries, as with Sandy 

Bridge. The load and store buffers, which are 

necessary for any memory accesses have grown by 

8 and 6 entries respectively, bringing the total to 72 

loads and 42 stores in-flight. 

Unlike AMD’s Bulldozer, Haswell continues to use 

a unified scheduler that holds all different types of 

uops. The scheduler in Haswell is now 60 entries, 

up from 54 in Sandy Bridge, those entries are 

dynamically shared between the active threads. The 

scheduler holds uops that are waiting to execute 

due to resource or operand constraints. Once ready, 

uops are issued to the execution units through 

dispatch ports. While fused uops occupy a single 

entry in the ROB, execution ports can handle a 

single un-fused uop. So a fused load+ALU uop will 

occupy two ports to execute. 

Haswell and Sandy Bridge both retire upto 4 fused 

uops/cycle, once all the constituent uops have been 

successfully executed. Retirement occurs in-order 

and clears out resources such as the ROB, physical 

register files and branch order buffer. 

Two of the new instruction set extensions place 

new burdens on the out-of-order machine. TSX 

creates a new class of potential pipeline flushes. As 

we predicted in the earlier article on Haswell’s TM, 

when a transaction aborts, the pipeline is cleared 

and the architectural state is rolled back. This looks 

largely similar to a branch misprediction. 

TSX also supports multiple nested transactions, 

which requires hardware resources to track and 

disambiguate different levels of nesting. 

Specifically, Haswell can have 7 nested 

transactions in flight. Any subsequent transactions 
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will abort as soon as they begin. It is important to 

note that this limit is micro architectural and may 

increase in future generations. Presumably this is 

linked to some hardware structure with 7 

speculative entries and the last entry is for the 

rollback state. 

Gather instructions are micro coded and introduce 

additional complexity to the microarchitecture. As 

to be expected, Intel’s approach to gather 

emphasizes simplicity and correctness. This leaves 

performance on the table relative to a more 

sophisticated implementation, but is less likely to 

result in project delays due to risky design choices. 

The number of uops executed by gather instruction 

depend on the number of elements. Each element is 

fetched by a load uop that consumes a load buffer 

entry, while ALU uops calculate the vector 

addressing and merge the gathered data into a 

single register. The uops that execute a gather have 

full access to the hardware and semantics that are 

quite different from conventional x86 load and 

ALU instructions, so the implementation of gather 

is more efficient than what a programmer could 

create.  

IV. HASWELL EXECUTION UNITS 

The execution units in Haswell are tremendously 

improved over Sandy Bridge, particularly to 

support AVX2 and the new FMA. Haswell adds an 

integer dispatch port and a new memory port, 

bringing the execution to eight uops/cycle. But the 

biggest changes are to the vector execution units. 

On the integer SIMD side, the hardware has been 

extended to single cycle 256-bit execution. For 

floating point vectors, the big change is 256-bit 

fused multiply add units for two of the execution 

ports. As a result, the theoretical peak performance 

for Haswell is more than double that of Sandy 

Bridge. 

Every cycle, up to eight uops are sent from the 

unified scheduler to the dispatch ports. As shown in 

Figure 3, computational uops are dispatched to 

ports 0, 1, 5, and 6 and executed on the associated 

execution units. The execution units include three 

types: integer, SIMD integer, and FP (both scalar 

and SIMD). 

Port 6 on Haswell is a new scalar integer port. It 

only accesses the integer registers and handles 

standard ALU (Arithmetic Logic Unit) operations, 

including shifts and branches that were previously 

on port 5 (in Sandy Bridge). One of the advantages 

of the new integer port is that it can handle many 

instructions while the SIMD dispatch ports are 

fully utilized. 

 

Figure 3 

V. HASWELL MEMORY HIERARCHY 

The memory hierarchy for Haswell is probably the 

biggest departure from the previous generation. 

The cache bandwidth doubled in tandem with an 

increase in FLOP/s from the new FMA units. 

Moreover, the whole memory system has been 

enhanced to support gather instructions and 

transactional memory. 

Memory accesses start by allocating entries in the 

load and store buffers, which can track more than 

100 uops, statically split between two threads. For 

Sandy Bridge, ports 2 and 3 calculated addresses, 

with port 4 for writing data into the L1 data cache. 

The new port 7 on Haswell handles address 

generation for stores. As a result, Haswell can now 

sustain two loads and one store per cycle under 

nearly any circumstances. 
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Comparison between Intel Sandy Bridge and Intel 

Haswell Memory Hierarchy 

Once an address has been calculated by the 

Address Generation Unit (AGU), the uop will 

probe the translation look-aside buffers (TLBs). 

The L1 DTLB in Haswell is the same organization 

as in Sandy Bridge. However, there is a third port 

on the DTLB to accommodate the new store AGU 

on port 7. Misses in the L1 DTLB are serviced by 

the unified L2 TLB, which has been substantially 

improved with support for 2MB pages and twice 

the number of entries. 

Similarly, the L1 data cache in Haswell is the same 

size and latency (minimum of four cycles), but with 

a third more bandwidth. The data cache can sustain 

two 256-bit loads and a 256-bit store every cycle, 

for 96B/cycle compared with 48B/cycle for Sandy 

Bridge. Moreover, the data cache in Sandy Bridge 

was banked, meaning that conflicts could 

potentially reduce the actual bandwidth. Turning to 

Haswell’s L2 cache, the capacity, organization, and 

latency is the same, but the bandwidth has also 

doubled. A full 64B cache line can be read each 

cycle. 

While the organization of the caches was largely 

unchanged, the capabilities are substantially greater 

in Haswell since the caches have been designed for 

TSX. As speculated, Haswell's transactional 

memory uses the L1 to store transaction data (either 

for Hardware Lock Elision or Restricted 

Transactional Memory). Transactions where the 

data fits in the L1D cache should be able to execute 

successfully. From a practical standpoint, this 

means that the L1D cache contains a bit of extra 

meta-data to track whether cache lines have been 

read or written to detect any conflicts. 

While the closest levels of the memory hierarchy 

have been significantly improved, Haswell’s 

system architecture has also been enhanced. The 

tags for the Last Level Cache (LLC) have been 

replicated, with one copy for reading data (at the 

same 32B/cycle) and another for prefetching and 

coherency requests. The write throughput for the 

memory controller is also significantly better due to 

larger write buffers for DRAM accesses and better 

scheduling algorithms. 

To reduce power, the ring and LLC are on a 

separate frequency domain from the CPU cores. 

This means that the CPUs can enter in a low-power 

state, while the ring and LLC run at full throttle to 

feed the GPU. For many graphically intense 

workloads, this can reduce the power consumption 

substantially. 

While Intel has demonstrated substantial 

improvements in idle and active power for Haswell, 

there was not sufficient detail for a comprehensive 

discussion. It's likely that this information will only 

be available when products come to market, since 

power management is implementation-specific. 

The most interesting innovation is the new S0ix 

states for Haswell, which reportedly brings tablet-

like power characteristics (e.g., always-on) to the 

PC through undisclosed mechanisms. 

So, in short here are the key 4th generation Intel 

processor (based on haswell architecture) features: 

The new processor builds on the processor graphics 

architecture first introduced in 2nd gen Intel® 

Core™ processors. While they were built with the 

32 nm manufacturing process, both 3rd and 4th 

generation processors are based on the 22 nm 

technology. The following paragraphs describe the 

key differences between the 3rd and 4th gen 

processors. 

1.First ever System on Chip (SoC) for a PC : 

The 4th gen Intel® Core™ processor is the first 

ever SoC for a PC. System on Chip, or SoC, 

integrates all the major building blocks for a system 

onto a single chip. With CPU, Graphics, Memory, 

and connectivity in one package, this innovative 
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modular design provides the flexibility to package 

a compelling processor graphics solution for 

multiple form factors. 

 

2.Enhanced battery life: 

The 4th gen processor provides up to 9.1 hours of 

HD video viewing compared to 6 hours on the 3rd 

gen one. The latest processor also provides 10-13 

days of standby power (with refreshed email and 

social media notifications) compared to 4.5 days of 

standby power on 3rd generation processors. 

 

Here is a Battery life comparison between 3rd 

Generation and 4th generation Intel® Core™ 

Processors  

 

Intel® Iris™ Graphics allows you to play the most 

graphic intensive games without the need for an 

additional graphics card. The graphics performance 

on the 4th gen processor nearly doubles the 

performance relative to the previous generation of 

Intel® HD Graphics. 

 

Intel® AVX 2.0 

Intel® Advanced Vector Extensions (Intel® AVX) 

2.0 is a 256-bit instruction set extension to Intel® 

Streaming SIMD Extensions (Intel® SSE). Intel 

AVX 2.0 build on version 1.0 and provides features 

like Fully Pipelined Fused Multiply Add on two 

ports thus providing twice the floating point 

performance for multiply-add workloads, 256-bit 

integer SIMD operations compared to older 128-bit 

gather operations and bit manipulation instructions. 

These capabilities enhance usages such as face 

detection, pro-imaging, high performance 

computing, consumer video and imaging, increased 

vectorization, and other advanced video processing 

capabilities. 

3. Intel Iris Graphics Extensions to DirectX API 

An added feature with 4th generation processor 

graphics is the API set for DirectX extensions. Two 

APIs are available that provide for pixel 

synchronization and instant access. Pixel 

synchronization lets you effectively 

read/modify/write per-pixel data, which makes the 

tasks of programmable blending and order 

independent transparency (OIT) more efficient. 

Instant access lets both CPU and GPU access the 

same memory for mapping and rendering. These 

APIs work on DirectX 11 and above. 

4. Security: 

Ultrabook systems with 4th gen processors come 

with enhanced security features like Intel® 

Platform Trust Technology, Intel® Insider, and 

Intel® Anti-Theft technology, the processors also 

feature Intel® Identity Protection Technology, 
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which provides identity protection and fraud 

deterrence. 

VI. CONCLUSIONS AND ANALYSIS 

There is much to like in Haswell: a bevy of new 

instructions, a more powerful microarchitecture, 

and lower power. For vector friendly workloads, 

AVX2 brings integer SIMD to 256-bit width—dead 

even with FP vectors—while doubling the number 

of FP operations through fused multiply-add 

(FMA). Crucially, Haswell also includes gather 

instructions to fetch non-contiguous data from 

memory, which makes it easier for compilers and 

programmers to use the x86 SIMD extensions. 

Intel’s transactional memory extensions have a 

smaller impact on performance but have more 

potential in the long run. The Hardware Lock 

Elision separates correctness from performance. 

Software can use simpler techniques such as 

coarse-grained locks, and the hardware will 

automatically optimize for performance. 

Alternatively, Restricted Transactional Memory is 

an entirely new way to write concurrent code that is 

far easier and more intuitive, with higher 

performance to boot. 

The Haswell microarchitecture has a modestly 

larger out-of-order window, with a 33 percent 

increase in dispatch ports and execution resources. 

Compared to previous generations, the theoretical 

FLOPs and integer operations have doubled for 

each core, primarily due to wider vectors. More 

significantly, the cache hierarchy can sustain twice 

the bandwidth, and it has fewer utilization 

bottlenecks. 

As tablets have become more robust and capable, 

in many respects Intel’s competitive focus has 

shifted away from AMD to the ARM ecosystem: 

Qualcomm, Samsung, NVidia, and others. Haswell 

will be the first high performance x86 core that can 

really fit in a tablet, albeit in high-powered models 

around the 10W mark rather than the 4W devices. 

For consumers, Haswell will offer a heady 

combination of Windows 8 (and compatibility with 

the x86 software base) with excellent performance 

and tablet-like power characteristics. Compared to 

AMD or ARM-based solutions, the performance 

will be dramatically higher, so the biggest question 

will be power efficiency. There, Intel is claiming 

some impressive advances while keeping the 

details close, particularly about actual products. 

In summary, Haswell is a superb new architecture 

that will carry Intel into new markets and a new era 

of competition, not only from AMD, but also the 

ARM ecosystem. Ultimately, products will reveal 

the performance and efficiency advantages of the 

Haswell family, but the architecture looks quite 

promising, a testament to Intel’s design team. 
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