
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100206 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 271

Abstract- This paper focuses mainly on the

architecture of Intel’s 4th generation processors

Haswell. The main aim is the extensive study of the

architecture, instruction set, memory hierarchy and

performance of the Haswell architecture. It also

presents a comparison between Intel’s previous

processors and Haswell processor architecture. This

research paper talks about Haswell architecture’s

battery life, graphics and security.

Index Terms– processors, instruction set, memory

hierarchy, graphics.

I. INTRODUCTION

Haswell is the first family of SoCs that have been

tailored to take advantage of Intel’s 22nm

FinFET process technology. While Ivy Bridge is

also 22nm, Intel’s circuit design team sacrificed

power and performance in favour of a swift

migration to a process with a radically new

transistor architecture.

The Haswell family features a new CPU core, new

graphics and substantial changes to the platform in

terms of memory and power delivery and power

management. All of these areas are significant from

a technical and economic perspective and interact

in various ways. However, the Haswell family

represents a menu of options that are available for

SoCs tailored to certain markets. Not every product

requires graphics (e.g. servers), nor is a new power

architecture desirable for cost optimized products

(e.g. desktops). Architects will pick and choose

from the menu of options, based on a variety of

technical and business factors.

The heart of the Haswell family is the eponymous

CPU. The Haswell CPU core pushes beyond the

PC market into new areas, such as the high-end of

the emerging tablet market. Haswell SoCs are

aimed at 10W, potentially with further power

reductions in the future. The 22nm node enables

this wider range, but Haswell’s design and

architecture play critical roles in fully exploiting

the benefits of the new process technology.

The Haswell CPU boasts a huge number of

architectural enhancements, with four extensions

that touch every aspect of the x86 instruction set

architecture (ISA). AVX2 brings integer SIMD to

256-bit vectors, and adds a gather instruction for

sparse memory accesses. The fused multiply-add

extensions improve performance for floating point

(FP) workloads, such as scientific computing, and

nicely synergize with the new gather instructions.

A small number of bit manipulation instructions aid

cryptography, networking and certain search

operations. Last, Intel has introduced TSX, or

transactional memory, an incredibly powerful

programming model for concurrency and multi-

threaded programming. TSX improves

performance and efficiency of software by better

utilizing the underlying multi-core hardware.

Intel’s design philosophy emphasizes superb single

core performance with low power. The new

Haswell core achieves even higher performance

than Sandy Bridge. The improvements in Haswell

are concentrated in the out-of-order scheduling,

execution units and especially the memory

hierarchy. It is a testament to the excellent front-

end in Sandy Bridge that relatively few changes

were necessary. The Haswell microarchitecture is a

dual-threaded, out-of-order microprocessor that is

capable of decoding 5 instructions, issuing 4 fused

uops (micro operations) and dispatching 8 uops

each cycle. The Haswell core is the basis of Intel’s

upcoming generation of SoCs and will be used

from tablets to servers, competing with AMD and a

variety of ARM-based SoC vendors.

II. HASWELL INSTRUCTION SET AND

FRONT-END

Haswell introduces a huge number of new

instructions for the x86 ISA, that fall into four

general families. The first is AVX2, which

promotes integer SIMD instructions from 128-bits

wide in SSE to 256-bits wide. The original AVX

was a 256-bit extension using the YMM registers,

but largely for floating point instructions. AVX2 is

the complement and brings integer SIMD to the full

YMM registers, along with some enhancements for

128-bit operation. AVX2 also adds more robust and

generalized support for vector permutes and shifts.

Perhaps more importantly, AVX2 includes 16 new

gather instructions, loads that can fetch 4 or 8 non-

contiguous data elements using special vector

addressing for both integer and floating point (FP)

SIMD. Gather is crucial for wider SIMD and

substantially simplifies vectorizing code. Note that

AVX2 does not include scatter instructions (i.e.,

vector addressed stores), because of complications

Intel’s Haswell CPU Microarchitecture

Jyoti Yadav1, Amandeep Singh2, Asif 3

http://www.realworldtech.com/intel-22nm-finfet/
http://www.realworldtech.com/intel-22nm-finfet/
http://www.realworldtech.com/haswell-tm/
http://www.realworldtech.com/haswell-tm/

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100206 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 272

with the x86 memory ordering model and the

load/store buffers.

While AVX2 emphasizes integer SIMD, Haswell

has huge benefits for floating point code. In

addition to gather, Intel’s Fused Multiply Add

(FMA) includes 36 FP instructions for performing

256-bit computations and 60 instructions for 128-

bit vectors. As announced in early 2008, Intel’s

FMA was originally architected for 4-operand

instructions. However, the 22nm Ivy Bridge can

perform register move instructions in the front-end

through register renaming tricks, without issuing

any uops. Intel’s architects determined that MOV

elimination with FMA3 provides about the same

performance as FMA4, but using denser and easier

to decode instructions; hence the abrupt about face

in late 2008.

The third extension is 15 scalar bit manipulation

instructions (known as BMI) that operate on

general integer registers. These instructions fall

into three general areas: bit field manipulations

such as insert, shift and extract; bit counting such

as leading zero count; and arbitrary precision

integer multiply and rotation. The latter is

particularly useful for cryptography. As an aside,

Haswell also adds a big-endian move instruction

(MOVBE) that can convert to and from traditional

x86 little-endian format. MOVBE was introduced

for Intel’s Atom, and is quite useful for embedded

applications that deal with storage and networking,

since TCP/IP is big-endian.

The last and most powerful of Intel’s ISA

extensions is TSX, which has been extensively

discussed in a previous article on Haswell’s

transactional memory. In short, TSX enables

programmers to write parallel code that focuses on

using synchronization for correctness, while the

hardware optimizes the execution for performance

and concurrency. Hardware Lock Elision (HLE)

transparently provides the performance and

throughput of fine-grained locking, even when

programmers use coarse-grained locks. Most

importantly, the hint prefixes are compatible with

older processors.

Restricted Transactional Memory (RTM) is an

entirely new programmer interface that provides

transactional memory to x86 developers. TM is far

more useful than traditional lock-based

synchronization, because transactions can protect

more complex data structures and be composed

across functions, modules and even applications.

However, it does require linking new libraries

using RTM and possibly rewriting software to get

the full benefits.

Both variants of TSX are tracked at 64B cache line

granularity. Excessive conflicts due to transaction

limits, false sharing, or data races can actually harm

performance, so developers must judiciously adopt

TSX. However, future implementations will most

likely have fewer conflicts and be more flexible.

Of these new instructions, the vast majority are

simple instructions that decode into a single uop.

However, the more complex ones such as gather

and the TSX commit and abort are micro coded.

Fundamentally, x86 is quite similar to RISC

architectures in a number of dimensions. ALU

operations are largely the same; there are only so

many ways to do addition, subtraction and

multiplication. However, the front-end is quite

different and one of the most challenging aspects of

modern x86 CPUs. The instruction caches are kept

coherent with data caches, and the variable length

instructions make decoding quite complex. x86

instructions range in size from 1-15 bytes, with

length-changing prefixes, inconsistent operand

positions and complex micro coded instructions.

Since the P6, these instructions have been

transformed into more tractable fixed length uops

that can be tracked by an out-of-order core. As with

all architectures, the instruction stream is

frequently interrupted by control flow such as

conditional branches, jumps, calls and returns,

which potentially redirect the instruction fetching

and introduce bubbles into the pipeline.

Sandy Bridge made tremendous strides in

improving the front-end and ensuring the smooth

delivery of uops to the rest of the pipeline. The

biggest improvement was a uop cache that

essentially acts as an L0 instruction cache, but

contains fixed length decoded uops. The uop cache

is virtually addressed and included in the L1

instruction cache. Hitting in the uop cache has

several benefits, including reducing the pipeline

length by eliminating power hungry instruction

decoding stages and enabling an effective

throughput of 32B of instructions per cycle. For

newer SIMD instructions, the 16B fetch limit was

problematic, so the uop cache synergizes nicely

with extensions such as AVX.

http://www.realworldtech.com/haswell-tm/
http://www.realworldtech.com/haswell-tm/

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100206 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 273

Fig 1. Haswell and Sandy Bridge Front-end

The most significant difference in Haswell’s front-

end is undoubtedly support for the various

instruction set extensions outlined above. At a high

level, instruction fetch and decode

microarchitecture is largely similar to Sandy

Bridge, as shown in Figure 1. There are a number

of subtle enhancements, but the concepts and many

of the details are the same.

As to be expected, the branch prediction for

Haswell has improved. Unfortunately, Intel was

unwilling to share the details or results of these

optimizations. The instruction cache is still 8-way

associative, 32KB and dynamically shared by the

two threads. The instruction TLBs are also

unchanged, with 128 entries for 4KB page

translations; the 4KB translations are statically

partitioned between the two threads and 4-way

associative. The 2MB page array is 8 entries, fully

associative and replicated for each thread.

Instruction fetching from the instruction cache

continues to be 16B per cycle. The fetched

instructions are deposited into a 20 entry

instruction queue that is replicated for each thread,

in both Sandy Bridge and Haswell.

The Haswell instruction cache was optimized for

handling misses faster. Speculative ITLB and cache

accesses are supported with better timing to

improve the benefits of prefetching, and the cache

controller is much more efficient about handling

instruction cache misses in parallel.

As with previous generations, the decoding is

performed by a complex decoder that emits 1-4

fused uops and three simple decoders that emit a

single fused uop in parallel. Alternatively,

instructions requiring more than 4 uops are handled

by microcode and block the conventional decoders.

Macro-fusion can combine adjacent compare and

branch instructions into a single uop, improving the

potential throughput to 5 instructions per cycle. The

decoding also contains the stack engine, which

resolves push/pop and call/return pairs without

sending uops further down the pipeline.

The Haswell uop cache is the same size and

organization as in Sandy Bridge. The uop cache

lines hold upto 6 uops, and the cache is organized

into 32 sets of 8 cache lines (i.e., 8 way

associative). A 32B window of fetched x86

instructions can map to 3 lines within a single way.

Hits in the uop cache can deliver 4 uops/cycle and

those 4 uops can correspond to 32B of instructions,

whereas the traditional front-end cannot process

more than 16B/cycle. For performance, the uop

cache can hold micro coded instructions as a

pointer to microcode, but partial hits are not

supported. As with the instruction cache, the

decoded uop cache is shared by the active threads.

One difference in Haswell’s decoding path is the

uop queue, which receives uops from the decoders

or uop cache and also functions as a loop cache. In

Sandy Bridge, the 28 entry uop queue was

replicated for each thread. However, in Ivy Bridge

the uop queue was combined into a single 56 entry

structure that is statically partitioned when two

threads are active. The distinction is that when a

single thread is executing on Ivy Bridge or

Haswell, the entire 56 entry uop buffer is available

for loop caching and queuing, making better use of

the available resources.

III. OUT-OF-ORDER SCHEDULING

Haswell’s out-of-order execution is where the

microarchitecture becomes quite interesting and

many changes are visible. Haswell is substantially

wider than Sandy Bridge with more resources for

dynamic scheduling.

The first part of out-of-order execution is renaming.

The renamer will map architectural source and

destination x86 registers onto the underlying

physical register files (PRFs) and allocates other

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100206 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 274

resources, such as load, store and branch buffer

entries and scheduler entries. Lastly, uops are

bound to particular ports for downstream

execution.

The renamer can take 4 fused uops out of the uop

queue for a single thread, allocating the appropriate

resources and renaming registers to eliminate false

dependencies. Crucially, these 4 fused uops can

map to more than just 4 execution pipelines. For

example, 4 fused load+execute uops might map to

8 actual uops, 4 loads and 4 dependent ALU

operations.

Haswell and Sandy Bridge Out-of-Order

Scheduling

Unlike Sandy Bridge, the renamer in Haswell and

Ivy Bridge does not have to handle all register to

register move uops. The front-end was enhanced to

handle certain register move uops, which saves

resources in the actual out-of-order execution by

removing these uops altogether.

The Haswell and Sandy Bridge core has unified

integer and vector renaming, scheduling and

execution resources. Most out-of-order resources

are partitioned between two active threads, so that

if one thread stalls, the other can continue to make

substantial forward progress. In contrast, AMD’s

Bulldozer splits the vector and integer pipelines.

Each Bulldozer module includes two complete

integer cores, but shares a single large vector core

between the two. Conceptually, Bulldozer is

dynamically sharing the floating point and vector

unit, while having dedicated integer cores.

The most performance critical resources in Haswell

have all been expanded. The ROB contains status

information about uops and has grown from 168

uops to 192, increasing the out-of-order window by

around 15%. Each fused uop occupies a single

ROB entry, so the Haswell scheduling window is

effectively over 300 operations considering fused

loads and stores. The ROB is statically split

between two threads, whereas other structures are

dynamically shared.

The physical register files hold the actual input and

output operands for uops. The integer PRF added a

modest 8 registers, bringing the total to 168. Given

that AVX2 was a major change to Haswell, it

should be no surprise that the number of 256-bit

AVX registers grew substantially to accommodate

the new integer SIMD instructions. Haswell

features 24 extra physical registers for renaming

YMM and XMM architectural registers. The

branch order buffer, which is used to rollback to

known good architectural state in the case of a

misprediction is still 48 entries, as with Sandy

Bridge. The load and store buffers, which are

necessary for any memory accesses have grown by

8 and 6 entries respectively, bringing the total to 72

loads and 42 stores in-flight.

Unlike AMD’s Bulldozer, Haswell continues to use

a unified scheduler that holds all different types of

uops. The scheduler in Haswell is now 60 entries,

up from 54 in Sandy Bridge, those entries are

dynamically shared between the active threads. The

scheduler holds uops that are waiting to execute

due to resource or operand constraints. Once ready,

uops are issued to the execution units through

dispatch ports. While fused uops occupy a single

entry in the ROB, execution ports can handle a

single un-fused uop. So a fused load+ALU uop will

occupy two ports to execute.

Haswell and Sandy Bridge both retire upto 4 fused

uops/cycle, once all the constituent uops have been

successfully executed. Retirement occurs in-order

and clears out resources such as the ROB, physical

register files and branch order buffer.

Two of the new instruction set extensions place

new burdens on the out-of-order machine. TSX

creates a new class of potential pipeline flushes. As

we predicted in the earlier article on Haswell’s TM,

when a transaction aborts, the pipeline is cleared

and the architectural state is rolled back. This looks

largely similar to a branch misprediction.

TSX also supports multiple nested transactions,

which requires hardware resources to track and

disambiguate different levels of nesting.

Specifically, Haswell can have 7 nested

transactions in flight. Any subsequent transactions

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100206 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 275

will abort as soon as they begin. It is important to

note that this limit is micro architectural and may

increase in future generations. Presumably this is

linked to some hardware structure with 7

speculative entries and the last entry is for the

rollback state.

Gather instructions are micro coded and introduce

additional complexity to the microarchitecture. As

to be expected, Intel’s approach to gather

emphasizes simplicity and correctness. This leaves

performance on the table relative to a more

sophisticated implementation, but is less likely to

result in project delays due to risky design choices.

The number of uops executed by gather instruction

depend on the number of elements. Each element is

fetched by a load uop that consumes a load buffer

entry, while ALU uops calculate the vector

addressing and merge the gathered data into a

single register. The uops that execute a gather have

full access to the hardware and semantics that are

quite different from conventional x86 load and

ALU instructions, so the implementation of gather

is more efficient than what a programmer could

create.

IV. HASWELL EXECUTION UNITS

The execution units in Haswell are tremendously

improved over Sandy Bridge, particularly to

support AVX2 and the new FMA. Haswell adds an

integer dispatch port and a new memory port,

bringing the execution to eight uops/cycle. But the

biggest changes are to the vector execution units.

On the integer SIMD side, the hardware has been

extended to single cycle 256-bit execution. For

floating point vectors, the big change is 256-bit

fused multiply add units for two of the execution

ports. As a result, the theoretical peak performance

for Haswell is more than double that of Sandy

Bridge.

Every cycle, up to eight uops are sent from the

unified scheduler to the dispatch ports. As shown in

Figure 3, computational uops are dispatched to

ports 0, 1, 5, and 6 and executed on the associated

execution units. The execution units include three

types: integer, SIMD integer, and FP (both scalar

and SIMD).

Port 6 on Haswell is a new scalar integer port. It

only accesses the integer registers and handles

standard ALU (Arithmetic Logic Unit) operations,

including shifts and branches that were previously

on port 5 (in Sandy Bridge). One of the advantages

of the new integer port is that it can handle many

instructions while the SIMD dispatch ports are

fully utilized.

Figure 3

V. HASWELL MEMORY HIERARCHY

The memory hierarchy for Haswell is probably the

biggest departure from the previous generation.

The cache bandwidth doubled in tandem with an

increase in FLOP/s from the new FMA units.

Moreover, the whole memory system has been

enhanced to support gather instructions and

transactional memory.

Memory accesses start by allocating entries in the

load and store buffers, which can track more than

100 uops, statically split between two threads. For

Sandy Bridge, ports 2 and 3 calculated addresses,

with port 4 for writing data into the L1 data cache.

The new port 7 on Haswell handles address

generation for stores. As a result, Haswell can now

sustain two loads and one store per cycle under

nearly any circumstances.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100206 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 276

Comparison between Intel Sandy Bridge and Intel

Haswell Memory Hierarchy

Once an address has been calculated by the

Address Generation Unit (AGU), the uop will

probe the translation look-aside buffers (TLBs).

The L1 DTLB in Haswell is the same organization

as in Sandy Bridge. However, there is a third port

on the DTLB to accommodate the new store AGU

on port 7. Misses in the L1 DTLB are serviced by

the unified L2 TLB, which has been substantially

improved with support for 2MB pages and twice

the number of entries.

Similarly, the L1 data cache in Haswell is the same

size and latency (minimum of four cycles), but with

a third more bandwidth. The data cache can sustain

two 256-bit loads and a 256-bit store every cycle,

for 96B/cycle compared with 48B/cycle for Sandy

Bridge. Moreover, the data cache in Sandy Bridge

was banked, meaning that conflicts could

potentially reduce the actual bandwidth. Turning to

Haswell’s L2 cache, the capacity, organization, and

latency is the same, but the bandwidth has also

doubled. A full 64B cache line can be read each

cycle.

While the organization of the caches was largely

unchanged, the capabilities are substantially greater

in Haswell since the caches have been designed for

TSX. As speculated, Haswell's transactional

memory uses the L1 to store transaction data (either

for Hardware Lock Elision or Restricted

Transactional Memory). Transactions where the

data fits in the L1D cache should be able to execute

successfully. From a practical standpoint, this

means that the L1D cache contains a bit of extra

meta-data to track whether cache lines have been

read or written to detect any conflicts.

While the closest levels of the memory hierarchy

have been significantly improved, Haswell’s

system architecture has also been enhanced. The

tags for the Last Level Cache (LLC) have been

replicated, with one copy for reading data (at the

same 32B/cycle) and another for prefetching and

coherency requests. The write throughput for the

memory controller is also significantly better due to

larger write buffers for DRAM accesses and better

scheduling algorithms.

To reduce power, the ring and LLC are on a

separate frequency domain from the CPU cores.

This means that the CPUs can enter in a low-power

state, while the ring and LLC run at full throttle to

feed the GPU. For many graphically intense

workloads, this can reduce the power consumption

substantially.

While Intel has demonstrated substantial

improvements in idle and active power for Haswell,

there was not sufficient detail for a comprehensive

discussion. It's likely that this information will only

be available when products come to market, since

power management is implementation-specific.

The most interesting innovation is the new S0ix

states for Haswell, which reportedly brings tablet-

like power characteristics (e.g., always-on) to the

PC through undisclosed mechanisms.

So, in short here are the key 4th generation Intel

processor (based on haswell architecture) features:

The new processor builds on the processor graphics

architecture first introduced in 2nd gen Intel®

Core™ processors. While they were built with the

32 nm manufacturing process, both 3rd and 4th

generation processors are based on the 22 nm

technology. The following paragraphs describe the

key differences between the 3rd and 4th gen

processors.

1.First ever System on Chip (SoC) for a PC :

The 4th gen Intel® Core™ processor is the first

ever SoC for a PC. System on Chip, or SoC,

integrates all the major building blocks for a system

onto a single chip. With CPU, Graphics, Memory,

and connectivity in one package, this innovative

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100206 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 277

modular design provides the flexibility to package

a compelling processor graphics solution for

multiple form factors.

2.Enhanced battery life:

The 4th gen processor provides up to 9.1 hours of

HD video viewing compared to 6 hours on the 3rd

gen one. The latest processor also provides 10-13

days of standby power (with refreshed email and

social media notifications) compared to 4.5 days of

standby power on 3rd generation processors.

Here is a Battery life comparison between 3rd

Generation and 4th generation Intel® Core™

Processors

Intel® Iris™ Graphics allows you to play the most

graphic intensive games without the need for an

additional graphics card. The graphics performance

on the 4th gen processor nearly doubles the

performance relative to the previous generation of

Intel® HD Graphics.

Intel® AVX 2.0

Intel® Advanced Vector Extensions (Intel® AVX)

2.0 is a 256-bit instruction set extension to Intel®

Streaming SIMD Extensions (Intel® SSE). Intel

AVX 2.0 build on version 1.0 and provides features

like Fully Pipelined Fused Multiply Add on two

ports thus providing twice the floating point

performance for multiply-add workloads, 256-bit

integer SIMD operations compared to older 128-bit

gather operations and bit manipulation instructions.

These capabilities enhance usages such as face

detection, pro-imaging, high performance

computing, consumer video and imaging, increased

vectorization, and other advanced video processing

capabilities.

3. Intel Iris Graphics Extensions to DirectX API

An added feature with 4th generation processor

graphics is the API set for DirectX extensions. Two

APIs are available that provide for pixel

synchronization and instant access. Pixel

synchronization lets you effectively

read/modify/write per-pixel data, which makes the

tasks of programmable blending and order

independent transparency (OIT) more efficient.

Instant access lets both CPU and GPU access the

same memory for mapping and rendering. These

APIs work on DirectX 11 and above.

4. Security:

Ultrabook systems with 4th gen processors come

with enhanced security features like Intel®

Platform Trust Technology, Intel® Insider, and

Intel® Anti-Theft technology, the processors also

feature Intel® Identity Protection Technology,

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100206 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 278

which provides identity protection and fraud

deterrence.

VI. CONCLUSIONS AND ANALYSIS

There is much to like in Haswell: a bevy of new

instructions, a more powerful microarchitecture,

and lower power. For vector friendly workloads,

AVX2 brings integer SIMD to 256-bit width—dead

even with FP vectors—while doubling the number

of FP operations through fused multiply-add

(FMA). Crucially, Haswell also includes gather

instructions to fetch non-contiguous data from

memory, which makes it easier for compilers and

programmers to use the x86 SIMD extensions.

Intel’s transactional memory extensions have a

smaller impact on performance but have more

potential in the long run. The Hardware Lock

Elision separates correctness from performance.

Software can use simpler techniques such as

coarse-grained locks, and the hardware will

automatically optimize for performance.

Alternatively, Restricted Transactional Memory is

an entirely new way to write concurrent code that is

far easier and more intuitive, with higher

performance to boot.

The Haswell microarchitecture has a modestly

larger out-of-order window, with a 33 percent

increase in dispatch ports and execution resources.

Compared to previous generations, the theoretical

FLOPs and integer operations have doubled for

each core, primarily due to wider vectors. More

significantly, the cache hierarchy can sustain twice

the bandwidth, and it has fewer utilization

bottlenecks.

As tablets have become more robust and capable,

in many respects Intel’s competitive focus has

shifted away from AMD to the ARM ecosystem:

Qualcomm, Samsung, NVidia, and others. Haswell

will be the first high performance x86 core that can

really fit in a tablet, albeit in high-powered models

around the 10W mark rather than the 4W devices.

For consumers, Haswell will offer a heady

combination of Windows 8 (and compatibility with

the x86 software base) with excellent performance

and tablet-like power characteristics. Compared to

AMD or ARM-based solutions, the performance

will be dramatically higher, so the biggest question

will be power efficiency. There, Intel is claiming

some impressive advances while keeping the

details close, particularly about actual products.

In summary, Haswell is a superb new architecture

that will carry Intel into new markets and a new era

of competition, not only from AMD, but also the

ARM ecosystem. Ultimately, products will reveal

the performance and efficiency advantages of the

Haswell family, but the architecture looks quite

promising, a testament to Intel’s design team.

REFERENCES

[1] Haswell (Microachitecture),

“en.wikipedia.org/wiki/Haswell_(microarchite

cture)”

[2] David Kanter Principal Analyst and Editor-in-

Chief, Real World Tech,

“http://www.realworldtech.com/haswell-cpu/”

[3] A look at Haswell,

“http://arstechnica.com/gadgets/2013/05/a-

look-at-haswell/1/.”

[4] Intel key features ,

“https://software.intel.com/en-us/articles/an-

introduction-to-the-intel-4th-generation-core-

processor “

[5] Intel new generation Haswell processors :

“What you need to know”,

“http://www.cnet.com/news/intels-new-fourth-

gen-haswell-processors-what-you-need-to-

know-faq/”

[6] The Intel Haswell Review,

“http://www.anandtech.com/show/8426/the-

intel-haswell-e-cpu-review-core-i7-5960x-i7-

5930k-i7-5820k-tested”

[7] “http://www.realworldtech.com/haswell-cpu/”

[8] “http://www.pcworld.com/article/2600325/inte

l-turns-its-attention-to-desktop-performance-

unveils-8-core-haswell-e-processor.html”

[9] Intel Haswell PC,

“https://www.pcspecialist.co.uk/computers/inte

l-haswell-pc/”

http://arstechnica.com/author/david-kanter/www.realworldtech.com

