
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100307 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1194

DEADLOCK DETECTION AND PREVENTION

 Manish Gahlot, Jatin Dadhwal

Department of Information Technology

Dronacharya College of Engineering, Khentawas, Farukh Nagar, Gurgaon, Haryana, India

Abstract-- A deadlock is a situation in which two or

more actions are each waiting for the other to finish,

and thus neither ever does. Deadlock is a result of some

uncontrolled sequence and request of resources among

processes in a distributed system. This paper presents

some system models and deadlock handling techniques

to deal with the problem. Also there are various

algorithms presented to see how deadlocks can be

detected.

 Index Terms- Deadlock Local Transaction Structure,

Global transaction Structure, Distributed database

system

I. INTRODUCTION

A deadlock is a circumstance in which two or more

activities are holding up for one another to complete,

and consequently not one or the other ever does.

In a transaction database, a deadlock happens when

two or more methods inside it transaction overhauls

two lines of data yet in the inverse request. Case in

point, first process named as process A redesigns

column 1 then line 2. In the same time period second

process named as methodology B upgrades push 2

then column 1. Process A can't get done with

redesigning line 2 until procedure B is done,

furthermore transform B can't get done with

upgrading column 1 until methodology A

completions. Regardless of the amount time is

permitted to pass, this circumstance can't illuminate

itself and this will regularly kill the transaction of the

procedure which ever has done the minimum

measure of work.

In Working Framework, a deadlock is a circumstance

which happens when a procedure enters a holding up

state on the grounds that an asset asked for is

continuously held by an alternate holding up

methodology, which thus is sitting tight for an

alternate asset.

In Operating System, a deadlock is a circumstance

which happens when a methodology enters a holding

up state on the grounds that an asset asked for is

continuously held by an alternate holding up

procedure, which thus is sitting tight for an alternate

asset. In the event that a procedure is not able to

transform its state inconclusively in light of the fact

that the assets asked for by it are continuously

utilized by an alternate holding up methodology, then

the framework is said to be in a stop.

The above diagram shows the deadlock situation

As we can see in the above diagram that Process B

wants a resource from Process A. Similarly Process C

wants resource from Process B and Process A from

Process C.

II. NECESSARY CONDITIONS FOR

DEADLOCK

There are four conditions are known as the Coffman

conditions. They were first described in a 1971

by Edward G. Coffman, Jr. All the following

conditions are necessary for a deadlock to occur

1. Mutual Exclusion: No less than one asset

must be held in a non-shareable mode. Stand

out methodology can utilize the asset at a

specific time.

2. Hold and Wait or Resource Holding: A

methodology is presently holding no less

than one asset and solicitations for an

alternate assets which are held by different

procedures.

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100307 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1195

3. No Preemption: a resource can be released

only voluntarily by the process which is

holding it, whenever the process completes

its task.

4. Circular Wait: A process must be sitting

tight for an asset which is constantly held by

an alternate process, and the following

process is holding up for the first process to

leave or say discharge the asset. Case in

point, there is a situated of holding up

processes, P = {p1, P2, ..., Pn}, such that

process P1 is sitting tight for an asset held

by process P2, process P2 is sitting tight for

an asset held by process P3 along these lines

on until last process PN is holding up for an

asset held by P1.

III. DEADLOCK DETECTION

It is fundamentally the process of really discovering

that a deadlock exists and recognizing the processes

and assets included in the deadlock.

The fundamental thought is to check allotment

against asset accessibility for all conceivable portion

groupings to figure out whether the framework is in

deadlocked state.

For Example:

Chandy-Misra-Hass Detection Algorithm

This is viewed as an edge-pursuing, test based

algorithm. This algorithm is considered as one of the

best deadlock location algorithms.

On the off chance that a process makes a solicitation

for an asset which falls flat or times out, the process

creates a message and sends it to each of the

processes holding one or a greater amount of its

asked for assets.

Each message contains the following information:

1. the id of the process that is blocked (the one

that initiates the probe message);

2. the id of the process is sending this

particular version of the probe message; and

3. the id of the process that should receive this

probe message.

At the point when a process gets a test message, it

verifies whether it is additionally holding up for

resources. If not, it is presently utilizing the required

resource and will in the long run complete and

discharge the resource.

On the off chance that it is holding up for resources,

it passes on the test message to all processes it knows

to be holding resources it has itself asked.

The process first adjusts the test message, changing

the sender and recipient ids.

On the off chance that a process gets a test message

that it perceives as having started, it knows there is a

cycle in the framework and consequently, gridlock.

[1] Chandy-Misra-Haas Algorithm

IV. ALGORITHM

Controller sending a message

if Pb is locally dependent on itself

 then declare deadlock

else for all Pb, Pc such that

 (i) Pa is locally dependent on Pb,

 (ii) Pb is waiting for 'Pc and

 (iii) Pb, Pb are on different controllers.

send probe(a, b, c).

Controller receiving a probe

if

 (i)Pc is idle,

 (ii) dependent c(a) = false, and

 (iii)requests responded by Pc to Pb

then begin

 "dependents""c"(a) = true;

 if c == a

 then declare that Pa is deadlocked

 else for all Pr,Ps such that

 (i) Pc is locally dependent on Pr,

 (ii) Pr is waiting for 'Ps and

 (iii) Pr, Ps are on different controllers.

 send probe(a, r, s).

end

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100307 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1196

V. DEADLOCK PREVENTION

It is the process of making it logically impossible for

one of the 4 conditions to hold. Deadlock can be

prevented by the methods given below:

Elimination of “Mutual Exclusion” Condition:

The shared rejection condition must hold for non-

sharable assets. That is, a few processes can't at the

same time impart a solitary asset. This condition is

troublesome in light of the fact that a few assets, for

example, the tap drive and printer, are non-shareable.

Elimination of “Hold and Wait” Condition: There

are two methods for this condition. Initially is that a

process appeal be conceded the greater part of the

assets it needs without a moment's delay, before

execution. Second is not to permit a process from

asking for assets at whatever point it has formerly

apportioned assets.

Elimination of “No-preemption” Condition: The

non-preemption condition might be minimized by

compelling a methodology sitting tight for an asset

that can't instantly be designated to give every last bit

of its as of now held assets, so different courses of

action may utilize them to complete.

Elimination of “Circular Wait” Condition: The

last condition, the circular wait, could be denied by

forcing an aggregate requesting on the majority of the

asset sorts and afterward compelling, all procedures

to ask for the assets in place.

VI. CONCLUSION

Deadlock control policies should no longer be

classified as prevention and avoidance. All of the

policies typically listed as deadlock control directly

negate a precondition of resource deadlock, including

those classified as “avoidance” schemes. Whenever

possible in computer science, and elsewhere,

simplicity is a desirable goal.

REFERENCES

[1] http://images.slideplayer.us/1/252903/slides/slide

_69.jpg

[2] http://en.wikipedia.org/wiki/Deadlock

[3] http://www.isi.edu/~faber/cs402/notes/lecture9.h

tml

[4] http://www.personal.kent.edu/~rmuhamma/OpSy

stems/Myos/deadlockPrevent.htm

