
© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100350 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1167

Operating Systems Security – A Review

Ipsita Vashista, Harsha Suri, Disha Papneja

Dronacharya College of Engineering

Abstract—Operating System is the core piece of software

which runs on all information systems, such as network

devices (routers, firewalls, etc.), Web servers, customer

desktops, PDAs, and so on. And the security of operating

systems is one of the fundamental concerns in the security of

cyberspace and e-commerce. Issues of operating system

security occupy a central role in applied computer science;

yet there has been no satisfactory complete solution to the

problem of computer security. Many known vulnerabilities

discovered so far are rooted from the bugs or deficiency in

operating systems.

This paper is a review on the security and lack of it in the most

commercial operating systems like UNIX and Microsoft

Windows, and its effect to the overall security of Web based

applications and services.

Index Terms— System Security, Mandatory Security,

Security Perimeter, SE-Linux, RBAC.

I. INTRODUCTION

Also known as operating system, kernel is the core piece of

software every modern computer system from network

servers, workstation desktops, to laptops and hand held

devices. It is executed on top of a bare machine of hardware

that allocates the basic resources of the system (CPU,

memory, device driver, communication port, etc.), and

supervises the execution of all applications within the

system. Microsoft Windows, different flavors of UNIX

(BSD, AIX, HP-UX, Solaris, etc.), Mac OS, and Linux are

some of the popular commercial and Open Source operating

systems.

Operating systems have a critical role in the operation of

any computer systems. The security (or the lack of it) of an

operating system has fundamental effects on the overall

security of a computer system (including the security of all

the applications and softwares running on that system). Any

compromises in the security of an operating system will put

any application running on the system in danger. Lack of

proper control and containment of execution of individual

applications in an operating system may lead to attack or

break-in from one application to other applications [11].

II. SECURITY OF OPERATING SYSTEMS

Concurrent execution of multiple applications in a single

physical computing hardware (which may have multiple

processing units) is provided by most of the modern

computer systems. In these multitasking and time sharing

environments, individual applications share the same system

resources, e.g. CPU, disk, memory, etc. under the operating

system’s control. In order to protect the execution of

individual application jobs from possible interference and

attack of other jobs, most contemporary operating systems

implement some abstract property of containment, such as

process (or task) and TCB (Task Control Block), virtual

memory space, file, port, and IPC (Inter Process

Communication), etc. [11].

The access decisions of most of the commercial operating

systems (MS Windows, UNIX, etc.) is based on user identity

and ownership. The role of the user, trustworthiness of the

programs, sensitivity or integrity of data, and other such

security relevant criteria are not considered. It is not possible

to control data flows or enforce a system wide security policy

as long as users or applications have complete discretion over

objects. Due to such weakness it is very easy to break in the

security of a system once an application has been

compromised. Some examples of potential exploits from a

compromised application are [5]:

 Use of unprotected system resources illegitimately.

For example, a worm program launches attack via

emails to all targets in the address book of a user after

it gets control in a user account.

 Subversion of application enforced protection through

the control of underneath system. For example, to

deface a Web site by gaining the control of the Web

server of the site, say changing a virtual directory in

Microsoft IIS.

 Gain direct access to protected system resources by

misusing privileges. For example, a compromised

“send mail” program running as root on a standard

Unix OS will result in super user privileges for the

attacker and uncontrolled accesses to all system

resources.

 Furnish of bogus security decision-making

information. For example, spoof of a file handle of

Sun’s NFS may easily give remote attackers gaining

access to files on the remote file server.

Protection against malicious code of an application using

existing mechanisms of most commercial operating systems

is not possible since a program running under the name of a

specific user receives all of the privileges associated with

that user.

III. MODEL OF SECURITY

In an access control based security model, there are two

sets-a set of objects and a set of subjects, which can itself be

an object. Each object and subject has a corresponding

security attribute or label or clearance, and a defined set of

control rule or security policy. This determines which

subject is authorized to access which object. For example,

in military security model [7], a security label consists of

two components: a security level with one of the four

ratings: unclassified, confidential, secret, and top secret,

where unclassified < confidential < secret < top secret, and

“<” means “less sensitive than”; a set of zero or more

categories (also known as compartments) that describe

kinds of information, for instance, the names CRYPTO,

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100350 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1168

NUCLEAR might mean information about cryptographic

algorithms, and nuclear related technology. Given two

security labels, (X, S1) and (Y, S2), (X, S1) is defined as

being “at least as sensitive as” (Y, S2) iff X • Y and S2

S1. For example, (TOP SECRET, {CRYPTO,

NUCLEAR}) > (SECRET, {CRYPTO}) where “>” means

“more sensitive than”. In general, security labels are

partially ordered. That is, it is possible for two labels to be

incomparable, in the sense that neither is more sensitive

than the other. For example, neither of the following is

comparable to each other: (TOP SECRET, {CRYPTO})

(SECRET, {NUCLEAR}). A more generalized hierarchy

of security classes (or levels) with a mathematical basis

was presented by Bell and La Padula in 1973 [8].

The National Computer Security Center (NCSC), later

DOD (Department of Defense) published an official

standard called “Trusted Computer System Evaluation

Criteria” [1], universally known as “the Orange Book” to

direct computer security safeguards to defend classified

information in remote access, remote sharing computer

systems. The Orange Book defines fundamental security

requirements for computer systems and specifies a series

of criteria for various levels of security ratings of a

computer system based on its system design and security

feature [11].

IV. REQUIREMENTS OF SECURE OPERATING SYSTEMS

In most operating systems, either all of the privileges are

granted, or none of the privileges are granted. This is the

one shot approach of access control and is due to the lack

of built-in mechanisms for the implementation of security

policies. The perception that the users and the programs

that they work upon are the good guys could be very

dangerous. They can no longer be deemed safe with

internet connectivity. The information needs to be

restricted within a “security perimeter” with strict rules

enforced by the system about who is permitted access to

specific resources [11]. Also information should not be

allowed to move from a more secure environment to a less

secure one.

Some of the basic requirements of an operating system are

mandatory security, support of diverse security policies

and assurance.

 Mandatory security – It is a built-in mechanism or

logic within the operating system (often called

system security module or system security

administrator) that implements and tightly controls

the definition and assignment of security attributes

and their actions (security policies) for every

operation or function provided by the system [11].

 Support of diverse security policies – A traditional

mac mechanisms (such as the multi-level security –

mls [8]) usually base its security decisions strictly on

security clearances for subjects and security labels

for object, and are normally too restricted to serve as

a general security solution [11].

 Assurance – A process or methodology to verify the

design and implementation of the system that should

actually behave as it claims to be and meet the security

requirements [11].

V. A CASE STUDY OF SE-LINUX

In this section, NSA’s SE-Linux is discussed as a case study

of the recent efforts in the development of secure operating

systems [6].

BACKGROUND

National Security Agency (NSA) which is the ultimate

gatekeeper of information security and assurance within

USA, has been involved in determining security

criteria/requirements for information systems. The

development of SE-Linux is indeed the results of several

previous projects of NSA, especially the dtos and flask [3,

4].

An important attribute of SE-Linux release is that it follows

the same Open Source Initiative as that of the Linux. All

documentation and source code of SE-Linux are publicly

available at NSA Web site [6] under the same terms and

conditions of Linux. This is in hope to reach a wide

audience and to encourage further efforts and research of

secure operating systems.

ARCHITECTURE

The SE-Linux is an adoption of the Flask security

architecture in Linux operating system. The integration of

the security architecture with Linux is accomplished in a

way that a new kernel module, called the Security Server

(SS) that implements the security policy decision logic, is

added into a non-security- enhanced Linux (hereafter as

ordinary Linux) that is patched with LSM (Linux Security

Module) [11-13] for maintaining security attributes in

kernel data structures and for the mechanism of security

control enforcement. Security contexts are not directly

bound to objects in the system. Instead, each object that

requires a security label is assigned with a security identifier

(SID) that is mapped to a security context. This mapping is

maintained by SS at run time.

An identity is given to every subject (process) of the

system. This comes from a user when the user logs on to

the system (this identity is orthogonal to Linux UID, and

will remain unchanged even after a process changes its

UID). A set of roles can be defined in security policies for

individual users that may be entered by processes with the

given user’s identity. Each role is specified by a security

policy for allowable actions whenever a subject assumes the

role (role-based access control RBAC). However, different

from the typical RBAC in which permissions are directly

granted to roles, type enforcement (TE) is used with roles

for fine- grained access controls in SE-Linux.

Security policies are specified in text-based policy

configuration files using a simple language developed for

SS. The policy configuration for a specific installation of

SE-Linux is checked and compiled into binary and loaded at

boot time into SS (if allowed by the policy, it may also be

reloaded at runtime)[11].

© 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100350 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1169

VI. CONCLUSION

With the ever growing security alerts, a better way to

address the root causes of vulnerabilities in the operating

systems should be explored. The methods discussed in this

article – executing applications from a strongly guarded,

secure operating system – can provide a frontier in battling

with many of existing cyber-space threats of the real world

Although, not all the dangers of current cyber space may

be eradicated and the security of individual applications

may still suffer from the vulnerabilities of their own with

these techniques, with a secure operating system, the

damages and the impacts among various applications can

be controlled.

REFERENCES

[1] DOD 5200.28-STD, “DOD Trusted Computer System

Evaluation Criteria” (Orange Book), 26 December

1985,

http://www.radium.ncsc.mil/tpep/library/rainbow/520

0.28-STD.pdf..

[2] DOD 5200.28-STD, “DOD Trusted Computer System

Evaluation Criteria” (Orange Book), 26 December

1985,

http://www.radium.ncsc.mil/tpep/library/rainbow/520

0.28-STD.pdf..

[3] “Flask: Flux Advanced security Kernel”,

http://www.cs.utah.edu/flux/fluke/html/flask.html.

[4] DTOS Technical Reports,

http://www.securecomputing.com/randt/HTML/techni

cal-docs.html.

[5] Chris Dalton and Tse Huong Choo, “An Operating

System Approach to Securing E-Services”,

Communications of the ACM, V. 44, No. 2, p. 58,

2001.

[6] Charlie Kaufman, Radia Perlman, and Mike

Speciner, “Network Security: Private Communication

in a Public World”, PTR Prentice Hall, Englewood

Cliffs, New Jersey, 1995.

[7] D.E. Bell and L. J. La Padula, “Secure Computer

Systems: Mathematical Foundations and Model”,

Technical Report M74-244, The MITRE Corporation,

Bedford, MA, May 1973.

[8] Ames, Stanley R., Jr., and J.G. Keeton-Williams,

“Demonstrating security for trusted applications on a

security kernel base”, IEEE Comp. Soc. Proc. 1980

Symp. Security and Privacy, April 1980.

[9] Stephen Smalley and Timothy Fraser, “A Security

Policy Configuration for the Security-Enhanced

Linux”, http://www.nsa.gov/selinux/doc/policy.pdf..

[10] H. Chen, P. Belhumeur, and D. Jacobs. In search of

illumination invariants. In IEEE Conf. on Comp.

Vision and Patt. Recog., pages 254–261, 2000 Linux

Security Modules: General Security Hooks for Linux,

http://lsm.immunix.org/docs/overview/linuxsecuritym

odule.html.

[11] Global Information Assurance Certification Paper,

SANS University

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf
http://www.cs.utah.edu/flux/fluke/html/flask.html
http://www.securecomputing.com/randt/HTML/technical-docs.html
http://www.securecomputing.com/randt/HTML/technical-docs.html
http://www.nsa.gov/selinux/doc/policy.pdf
http://lsm.immunix.org/docs/overview/linuxsecuritymodule.html
http://lsm.immunix.org/docs/overview/linuxsecuritymodule.html

