
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101022 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 333

A COMPARATIVE STUDY OF STACK AND

QUEUES IN DATA STRUCTURE

Anoop, Sunil Rai

Department of Electronics and Computer

Dronacharya College of Engineering, Gurgaon, Haryana

Abstract- The objective of this paper is to

comprehensive study related to stack and queues in

data structure. Stack and Queue are abstract data type.

As we know that in our daily life we faced many

problems related to collection of entities in order. A

stack is an ordered list in which all insertions and

deletions are made at one end, called the top and A

queue is an ordered list in which all insertions take

place at one end, the rear, while all deletions take place

at the other end, the front. Stack is known as Last-in-

first-out (LIFO) whereas Queues is related to First-in-

first-out (FIFO). In this paper, an attempt has been

made by us to study the whole concept related to stack

and queues.

Index Terms- LIFO; FIFO.

I. INTRODUCTION

In our daily life we have seen that anything like

books, chair, plates etc. should be placed in an order.

This is the idea from where stack and queues were

introduced. Basically stack and queues are the

abstract data type but there is some difference in their

insertion and deletion process. In stack, insertion and

deletion takes place from only at one side but in case

of queues insertion and deletion takes place at two

ends known as rear end and front end. Elements are

inserted from the rear end and deleted from front end.

We will go to learn about stack as well as queues in

detail.

II. STACK

A stack is a container of objects that are inserted and

removed according to the last-in first-out (LIFO)

principle. In the pushdown stacks only two

operations are allowed: push the item into the stack,

and pop the item out of the stack. A stack is a limited

access data structure - elements can be added and

removed from the stack only at the top. Push adds an

item to the top of the stack, pop removes the item

from the top. A helpful analogy is to think of a stack

of books; you can remove only the top book, also you

can add a new book on the top.

A stack may be implemented to have a bounded

capacity. If the stack is full and does not contain

enough space to accept an entity to be pushed, the

stack is then considered to be in an overflow state.

The pop operation removes an item from the top of

the stack. A pop either reveals previously concealed

items or results in an empty stack, but, if the stack is

empty, it goes into underflow state, which means no

items are present in stack to be removed.

A stack is a restricted data structure, because only a

small number of operations are performed on it. The

nature of the pop and push operations also mean that

stack elements have a natural order. Elements are

removed from the stack in the reverse order to the

order of their addition. Therefore, the lower elements

are those that have been on the stack the longest.

Example of Stack:

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101022 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 334

A. History

The stack was first proposed in 1946, in the computer

design of Alan M. Turing (who used the terms "bury"

and "unbury") as a means of calling and returning

from subroutines. Subroutines had already been

implemented in Konrad Zuse's Z4 in 1945. Klaus

Samelson and Friedrich L. Bauer of Technical

University Munich proposed the idea in 1955 and

filed a patent in 1957. The same concept was

developed, independently, by the Australian Charles

Leonard Hamblin in the first half of 1957.

B. Implementation

In the standard library of classes, the data type stack

is an adapter class, meaning that a stack is built on

top of other data structures. The underlying structure

for a stack could be an array, a vector, an ArrayList, a

linked list, or any other collection. Regardless of the

type of the underlying data structure, a Stack must

implement the same functionality. This is achieved

by providing a unique interface:

public interface StackInterface<AnyType>

{

 public void push(AnyType e);

 public AnyType pop();

 public AnyType peek();

 public boolean isEmpty();

}

The following picture demonstrates the idea of

implementation by composition:

Array-based implementation

In an array-based implementation we

maintain the following fields: an array A of a default

size (≥ 1), the variable top that refers to the top

element in the stack and the capacity that refers to the

array size. The variable top changes from -1 to

capacity - 1. We say that a stack is empty when top =

-1, and the stack is full when top = capacity-1.

Linked List-based implementation

Linked List-based implementation provides

the best (from the efficiency point of view) dynamic

stack implementation.

C. Applications

Stacks are present everyday life, from the books in a

library, to the blank sheets of paper in a printer tray.

All these applications follow the Last In First Out

(LIFO) logic, which means that (for example) a book

is added on top of a pile of books, while removing a

book from a pile also takes the book on top of a pile.

Below are a few applications of stacks in computing.

a. Expression evaluation and syntax parsing

Calculators employing reverse Polish notation use a

stack structure to hold values. Expressions can be

represented in prefix; postfix or infix notations and

conversion from one form to another may be

accomplished using a stack.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101022 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 335

b. Backtracking

Another important application of stacks is

backtracking. Consider a simple example of finding

the correct path in a maze. There are a series of

points, from the starting point to the destination. We

start from one point. To reach the final destination,

there are several paths. Suppose we choose a random

path. After following a certain path, we realise that

the path we have chosen is wrong. So we need to find

a way by which we can return to the beginning of that

path. This can be done with the use of stacks. With

the help of stacks, we remember the point where we

have reached. This is done by pushing that point into

the stack. In case we end up on the wrong path, we

can pop the last point from the stack and thus return

to the last point and continue our quest to find the

right path. This is called backtracking.

c. Runtime memory management

A number of programming languages are stack-

oriented, meaning they define most basic operations

(adding two numbers, printing a character) as taking

their arguments from the stack, and placing any

return values back on the stack. For example,

PostScript has a return stack and an operand stack,

and also has a graphics state stack and a dictionary

stack. Many virtual machines are also stack-oriented,

including the p-code machine and the Java Virtual

Machine.

III. QUEUES

A queue is an ordered collection of items where the

addition of new items happens at one end, called the

“rear,” and the removal of existing items occurs at

the other end, commonly called the “front.” As an

element enters the queue it starts at the rear and

makes its way toward the front, waiting until that

time when it is the next element to be removed.

The most recently added item in the queue must wait

at the end of the collection. The item that has been in

the collection the longest is at the front. This ordering

principle is sometimes called FIFO, first-in first-

out. It is also known as “first-come first-served.”

The process to add an element in the queues is known

as Enqueue and the process of removal of element

form the queue is known as Dequeue.

Example of Queue:

A. Implementation

In the standard library of classes, the data type queue

is an adapter class, meaning that a queue is built on

top of other data structures. The underlying structure

for a queue could be an array, a Vector, an Array

List, a Linked List, or any other collection.

Regardless of the type of the underlying data

structure, a queue must implement the same

functionality. This is achieved by providing a unique

interface.

interface QueueInterface‹AnyType>

{

 public boolean isEmpty();

 public AnyType getFront();

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101022 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 336

 public AnyType dequeue();

 public void enqueue(AnyType e);

 public void clear();

}

Each of the above basic operations must run at

constant time O(1). The following picture

demonstrates the idea of implementation by

composition.

Circular Queue

Given an array A of a default size (≥ 1) with

two references back and front, originally set to -1 and

0 respectively. Each time we insert (enqueue) a new

item, we increase the back index; when we remove

(dequeue) an item - we increase the front index. Here

is a picture that illustrates the model after a few steps:

As you see from the picture, the queue logically

moves in the array from left to right. After several

moves back reaches the end, leaving no space for

adding new elements

However, there is a free space before the front index.

We shall use that space for enqueueing new items,

i.e. the next entry will be stored at index 0, then 1,

until front. Such a model is called a wrap around

queue or a circular queue

Finally, when back reaches front, the queue is full.

There are two choices to handle a full queue: a)

throw an exception; b) double the array size.

B. Applications

Queue, as the name suggest is used whenever we

need to have any group of objects in an order in

which the first one coming in, also gets out first while

the others wait for their turn, like in the following

scenarios:

1. Serving requests on a single shared resource,

like printer, CPU task scheduling etc.

2. In real life, call center phone systems will

Queues, to hold people calling them in an

order, until a service representative is free.

3. Handling of interrupts in real-time systems.

The interrupts are handled in the same order

as they arrive, first come first served.

REFERENCES

1. www.wikipedia.com

2. Victor S.Adamchik, CMU, 2009

3. www.cprogramming.com

4. Dr. Friedrich Ludwig Bauer and Dr. Klaus

Samelson (30 March 1957). "Verfahren zur

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101022 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 337

automatischen Verarbeitung von kodierten

Daten und Rechenmaschine zur Ausübung

des Verfahrens" (in German). Germany,

Munich: Deutsches Patentamt. Retrieved

2010-10-01.

5. C. L. Hamblin, "An Address less Coding

Scheme based on Mathematical Notation",

N.S.W University of Technology, May 1957

(typescript)

6. Pritesh tarpal, www.c4learn.com

7. Data structures, Algorithms and

Applications in C++ by Sartaj Sahni

8. Gopal, Arpita. Magnifying Data Structures.

PHI.

