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Abstract-We introduce an integral transform related to 

a Fourier sine-Fourier - Fourier cosine generalized 

convolution and prove a Watson type theorem for the 

transform. As applications we obtain solutions of some 

integral equations in closed form.. Convolution describes 

the output (in terms of the input) of an important class of 

operations known as linear time-invariant (LTI). See LTI 

system theory for a derivation of convolution as the 

result of LTI constraints. In terms of the Fourier 

transforms of the input and output of an LTI operation, 

no new frequency components are created. The existing 

ones are only modified (amplitude and/or phase). In 

other words, the output transform is the pointwise 

product of the input transform with a third transform 

(known as a transfer function). See Convolution theorem 

for a derivation of that property of convolution. 

Conversely, convolution can be derived as the inverse 

Fourier transform of the pointwise product of two 

Fourier transforms. 

 

Index Terms-Convolution, Watson theorem, Fourier sine 

transform, fourier cosine transform, Integral equation,  

Hölder inequality  

I. INTRODUCTION 

In mathematics and, in particular, functional analysis, 

convolution is a mathematical operation on two 

functions f and g, producing a third function that is 

typically viewed as a modified version of one of the 

original functions, giving the area overlap between the 

two functions as a function of the amount that one of 

the original functions is translated. Convolution is 

similar to cross-correlation. It has applications that 

include probability, statistics, computer vision, image 

and signal processing, electrical engineering, and 

differential equations. 

 

The convolution of f and g is written f∗g, using an asterisk 

or star. It is defined as the integral of the product of the 

two functions after one is reversed and shifted. As such, it 

is a particular kind of integral transform: 

  
 

 
      (commutativity) 

While the symbol t is used above, it need not represent the 

time domain. But in that context, the convolution formula 

can be described as a weighted average of the function f(τ) 

at the moment t where the weighting is given by g(−τ) 

simply shifted by amount t. As t changes, the weighting 

function emphasizes different parts of the input function. 

For functions f, g supported on only (i.e., zero for 

negative arguments), the integration limits can be 

truncated, resulting in 

 

II. HISTORICAL DEVELOPMENTS 

One of the earliest uses of the convolution integral 

appeared in D'Alembert's derivation of Taylor's 

theorem in Recherches sur différents points 

importants du système du monde, published in 1754.
[1]

 

Also, an expression of the type: 

 
is used by Sylvestre François Lacroix on page 505 of his 

book entitled Treatise on differences and series, which is 
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the last of 3 volumes of the encyclopedic series: Traité du 

calcul différentiel et du calcul intégral, Chez Courcier, 

Paris, 1797-1800.
[2]

 Soon thereafter, convolution 

operations appear in the works of Pierre Simon Laplace, 

Jean Baptiste Joseph Fourier, Siméon Denis Poisson, and 

others. The term itself did not come into wide use until the 

1950s or 60s. Prior to that it was sometimes known as 

faltung (which means folding in German), composition 

product, superposition integral, and Carson's integral.
[3]

 

Yet it appears as early as 1903, though the definition is 

rather unfamiliar in older uses.
[4][5]

 

The operation: 

 
is a particular case of composition products considered by 

the Italian mathematician Vito Volterra in 1913.
[6] 

III. CIRCULAR CONVOLUTION 

When a function gT is periodic, with period T, then for 

functions, f, such that f∗gT exists, the convolution is 

also periodic and identical to: 

 
where to is an arbitrary choice. The summation is called a 

periodic summation of the function f. 

When gT is a periodic summation of another function, g, 

then f∗gT is known as a circular or cyclic convolution of f 

and g. 

And if the periodic summation above is replaced by fT, the 

operation is called a periodic convolution of fT and gT. 

IV. DISCRETE CONVOLUTION 

For complex-valued functions f, g defined on the set Z 

of integers, the discrete convolution of f and g is 

given by:
[7]

 

 

      

(commutativity) 

The convolution of two finite sequences is defined by 

extending the sequences to finitely supported functions on 

the set of integers. When the sequences are the coefficients 

of two polynomials, then the coefficients of the ordinary 

product of the two polynomials are the convolution of the 

original two sequences. This is known as the Cauchy 

product of the coefficients of the sequences. 

Thus when g has finite support in the set 

(representing, for instance, a finite impulse response), a 

finite summation may be used:
[8] 

V. CIRCULAR DISCRETE CONVOLUTION 

When a function gN is periodic, with period N, then for 

functions, f, such that f∗gN exists, the convolution is 

also periodic and identical to: 

 
The summation on k is called a periodic summation of the 

function f. 

If gN is a periodic summation of another function, g, then 

f∗gN is known as a circular convolution of f and g. 

When the non-zero durations of both f and g are limited to 

the interval [0, N − 1], f∗gN reduces to these common 

forms: 

 

  
  
  

  
 

(E

q.

1) 

The notation (f ∗N g) for cyclic convolution denotes 

convolution over the cyclic group of integers modulo N. 

Circular convolution arises most often in the context of 

fast convolution with an FFT algorithm. 

 
 

 

 

VI. INTEGRABLE FUNCTIONS 

The convolution of f and g exists if f and g are both 

Lebesgue integrable functions in L
1
(R

d
), and in this 

case f∗g is also integrable (Stein & Weiss 1971, 

Theorem 1.3). This is a consequence of Tonelli's 

theorem. This is also true for functions in , under 

the discrete convolution, or more generally for the 

convolution on any group. 
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Likewise, if f ∈ L
1
(R

d
) and g ∈ L

p
(R

d
) where 1 ≤ p ≤ ∞, 

then f∗g ∈ L
p
(R

d
) and 

 
In the particular case p = 1, this shows that L

1
 is a Banach 

algebra under the convolution (and equality of the two 

sides holds if f and g are non-negative almost everywhere). 

More generally, Young's inequality implies that the 

convolution is a continuous bilinear map between suitable 

L
p
 spaces. Specifically, if 1 ≤ p,q,r ≤ ∞ satisfy 

 
then 

 
so that the convolution is a continuous bilinear mapping 

from L
p
×L

q
 to L

r
. The Young inequality for convolution is 

also true in other contexts (circle group, convolution on Z). 

The preceding inequality is not sharp on the real line: 

when 1 < p, q, r < ∞, there exists a constant Bp, q < 1 such 

that: 

 
The optimal value of Bp, q was discovered in 1975.

[13]
 

A stronger estimate is true provided 1 < p, q, r < ∞ : 

 

where is the weak L
q
 norm. Convolution also 

defines a bilinear continuous map 

for , 

owing to the weak Young inequality:
[14]

 

 

VII. PROPERTIES 

7.1 Algebraic properties 

The convolution defines a product on the linear space of 

integrable functions. This product satisfies the following 

algebraic properties, which formally mean that the space of 

integrable functions with the product given by convolution 

is a commutative algebra without identity (Strichartz 1994, 

§3.3). Other linear spaces of functions, such as the space of 

continuous functions of compact support, are closed under 

the convolution, and so also form commutative algebras. 

Commutativity 

 
Associativity 

 
Distributivity 

 
Associativity with scalar multiplication 

 
for any real (or complex) number . 

Multiplicative identity 

No algebra of functions possesses an identity for the 

convolution. The lack of identity is typically not a major 

inconvenience, since most collections of functions on 

which the convolution is performed can be convolved with 

a delta distribution or, at the very least (as is the case of L
1
) 

admit approximations to the identity. The linear space of 

compactly supported distributions does, however, admit an 

identity under the convolution. Specifically, 

 
where δ is the delta distribution. 

Inverse element 

Some distributions have an inverse element for the 

convolution, S
(−1)

, which is defined by 

 
The set of invertible distributions forms an abelian group 

under the convolution. 

Complex conjugation 

 
7.3 Integration 

If f and g are integrable functions, then the integral of their 

convolution on the whole space is simply obtained as the 

product of their integrals: 

 
This follows from Fubini's theorem. The same result holds 

if f and g are only assumed to be nonnegative measurable 

functions, by Tonelli's theorem. 

7.2 Differentiation 

In the one-variable case, 

 
where d/dx is the derivative. More generally, in the case of 

functions of several variables, an analogous formula holds 

with the partial derivative: 

 
A particular consequence of this is that the convolution can 

be viewed as a "smoothing" operation: the convolution of f 

and g is differentiable as many times as f and g are in total. 

These identities hold under the precise condition that f and 

g are absolutely integrable and at least one of them has an 

absolutely integrable (L
1
) weak derivative, as a 

consequence of Young's inequality. For instance, when f is 

continuously differentiable with compact support, and g is 

an arbitrary locally integrable function, 
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These identities also hold much more broadly in the sense 

of tempered distributions if one of f or g is a compactly 

supported distribution or a Schwartz function and the other 

is a tempered distribution. On the other hand, two positive 

integrable and infinitely differentiable functions may have 

a nowhere continuous convolution. 

In the discrete case, the difference operator 

D f(n) = f(n + 1) − f(n) satisfies an analogous relationship: 

 

VIII. APPLICATIONS 

Convolution and related operations are found in many 

applications in science, engineering and mathematics. 

 In image processing 

See also: digital signal processing 

In digital image processing convolutional filtering 

plays an important role in many important 

algorithms in edge detection and related 

processes. 

In optics, an out-of-focus photograph is a 

convolution of the sharp image with a lens 

function. The photographic term for this is bokeh. 

In image processing applications such as adding 

blurring. 

 In digital data processing 

In analytical chemistry, Savitzky–Golay 

smoothing filters are used for the analysis of 

spectroscopic data. They can improve signal-to-

noise ratio with minimal distortion of the spectra. 

In statistics, a weighted moving average is a 

convolution. 

 In acoustics, reverberation is the convolution of 

the original sound with echos from objects 

surrounding the sound source. 

In digital signal processing, convolution is used to 

map the impulse response of a real room on a 

digital audio signal. 

In electronic music convolution is the imposition 

of a spectral or rhythmic structure on a sound. 

Often this envelope or structure is taken from 

another sound. The convolution of two signals is 

the filtering of one through the other. 

 In electrical engineering, the convolution of one 

function (the input signal) with a second function 

(the impulse response) gives the output of a linear 

time-invariant system (LTI). At any given 

moment, the output is an accumulated effect of all 

the prior values of the input function, with the 

most recent values typically having the most 

influence (expressed as a multiplicative factor). 

The impulse response function provides that 

factor as a function of the elapsed time since each 

input value occurred. 

 In physics, wherever there is a linear system with 

a "superposition principle", a convolution 

operation makes an appearance. For instance, in 

spectroscopy line broadening due to the Doppler 

effect on its own gives a Gaussian spectral line 

shape and collision broadening alone gives a 

Lorentzian line shape. When both effects are 

operative, the line shape is a convolution of 

Gaussian and Lorentzian, a Voigt function. 

In Time-resolved fluorescence spectroscopy, the 

excitation signal can be treated as a chain of delta 

pulses, and the measured fluorescence is a sum of 

exponential decays from each delta pulse. 

In computational fluid dynamics, the large eddy 

simulation (LES) turbulence model uses the 

convolution operation to lower the range of length 

scales necessary in computation thereby reducing 

computational cost. 

 In probability theory, the probability distribution 

of the sum of two independent random variables 

is the convolution of their individual distributions. 

In kernel density estimation, a distribution is 

estimated from sample points by convolution with 

a kernel, such as an isotropic Gaussian. (Diggle 

1995). 

 In radiotherapy treatment planning systems, most 

part of all modern codes of calculation applies a 

convolution-superposition algorithm. 
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