
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101030 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2127

Energy Management in Mobile Devices with the Cinder

Operating System

Akshay Behl, Akash Bhatia, Avril Puri

Dronacharya College Of Engineering,GGN

Abstract- We present Cinder, an operating system for

mobile phones and devices, that allows users and

applications to control and manage limited device

resources such as energy. We argue that controlling

energy allocation is an important and increasingly

useful feature for operating systems, especially on

mobile devices. We present two new low-level

abstractions in the Cinder operating system, taps and

reserves, which store and distribute energy for

application use. We identify three key properties of

control isolation, delegation, and subdivision and show

how using these abstractions can achieve them. We also

show how the architecture of the HiStar information

flow control kernel lends itself well to control energy.

We prototype and evaluate Cinder on a popular

smartphone, the Android G1.

Index Terms- Energy, mobile phones, power

management.

I. INTRODUCTION

In the past decade, mobile phones have emerged as a

dominant computing platform for end users. These

very personal computers depend heavily on graphical

user interfaces, always-on connectivity, and long

battery life, yet in essence run operating systems

originally designed for workstations (Mac OS

X/Mach) or time-sharing systems (Linux/Unix).

Historically, operating systems have had poor energy

management and accounting. This is not surprising,

as their APIs standardized before energy was an

issue. This limited control and visibility of energy is

especially problematic for mobile phones, where

energy and power define system lifetime. In the past

decade, phones have evolved from low-function

proprietary applications to robust multi- programmed

systems with applications from thousands of sources.

Apple announced that as their App Store houses

185,000 apps for the iPhone with more than 4 billion

application downloads. This shift away from single-

vendor software to complex application platforms

means that the phone’s software must provide

effective mechanisms to manage and control energy

as a resource. Such control will be even more

important as the danger grows from buggy or poorly

designed applications to potentially malicious ones.

In the past year, mobile phone operating systems

began providing better support for understanding

system energy use. Android, for example, added a UI

that estimates application energy consumption with

system call and event instrumentation, such as

processor scheduling and packet counts. This is a step

forward, helping users understand the mysteries of

mobile device lifetime.

 This paper presents Cinder, a new operating system

de- signed for mobile phones and other energy-

constrained computing devices. Cinder extends the

HiStar secure kernel to provide new abstractions for

controlling and accounting for energy: reserves and

taps. Taps and reserves compose together to allow

applications to express their intentions, enabling

policy enforcement by the operating system.

II. A CASE FOR ENERGY CONTROL

This section motivates the need for low-level, fine-

grained energy control in a mobile device

operating system. It starts by reviewing some of the

prior work on energy visibility and the few examples

of coarse energy control. The next section describes

reserves and taps, abstractions which provide these

mechanisms at a fine granularity.

There is rich prior work on addressing the visibility

problem of attributing consumption to application

principals. Control, in contrast, has seen much less

effort. Early systems like EcoSystem proposed

highlevel application power limits. Mobile

applications today, however, are much more

complex: they spawn and invoke other services and

have a much richer set of peripherals to manage. We

believe that for users and applications to effectively

control power, an operating system must provide

three mechanisms: isolation, subdivision, and

delegation. We motivate these mechanisms through

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101030 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2128

three application examples that we follow through the

rest of the paper. Isolation is a fundamental part of an

operating system. Memory and IPC isolation provide

security, while cpu and disk space isolation ensure

that processes cannot starve others by hogging

needed resources.

III. DESIGN

Cinder is based on the HiStar operating system which

is a secure exo-kernel that controls information flow

using a label mechanism. The kernel provides a small

set of kernel object types to applications, from which

the rest of system is built: threads, address spaces,

segments, gates, containers, and devices. Cinder adds

two new kernel object types: reserves and taps. This

section gives an overview of HiStar, describes

reserves and taps, gives examples of how they can be

used, and provides details on their security and

information flow.

3.1 HISTAR

HiStar is composed of six first-class kernel objects,

all protected by a security label. Its segments,

threads, address spaces, and devices are similar to

those of conventional kernels. Containers enable

hierarchical control over deallocation of kernel

objects – objects must be referenced by a container or

face garbage collection. Gates provide protected

control transfer of a thread from one address space to

a named offset in another; they are the basis for all

IPC.

3.2 RESERVES

A reserve describes a right to use a given quantity of

a resource, such as energy. When an application

consumes a resource the Cinder kernel reduces the

values in the corre- sponding reserve. The kernel

prevents threads from performing actions for which

their reserves do not have sufficient resources.

Reserves, like all other kernel objects, are protected

by a security label (§3.5) that controls which threads

can ob- serve, use, and manipulate it.

3.3 TAPS

A tap transfers a fixed quantity of resources between

two reserves per unit time, which controls the

maximum rate at which a resource can be consumed.

For example, an appli- cation reserve may be

connected to the system battery via a tap supplying 1

mJ/s (1 mW).

Taps aid in subdividing resources between

applications since partitioning fixed quantities is

impractical for most policies. A user may want her

phone to last at least 5 hours if she is surfing the web;

the amount of energy the browser should receive is

relative to the length of time it is used. Providing

resources as a rate naturally addresses this. Taps are

made up of four pieces of state: a rate, a source

reserve, a sink reserve, and a security label

containing the privileges necessary to transfer the

resources between the source and sink

FIGURE:

A 15 kJ battery, or root reserve, connected to a

reserve via a tap. The battery is protected from being

misused by the web browser. The web browser draws

energy from an isolated reserve which is fed by a 750

mW tap.

5.4 ACCESS CONTOL & SECURITY

Any thread can create and share reserves or taps to

subdivide and delegate its resources. This ability

introduces a problem of fine grained access control.

To solve this, reserves and taps are protected by a

security label, like all other kernel objects. The label

describes the privileges needed to observe, modify,

and use the reserve or tap. Since a tap actively moves

resources between a source and sink reserve, it needs

privileges to observe and modify both reserve levels;

to aid with this, taps can have privileges embedded in

them.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101030 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2129

VI. CINDER ON HTC DREAM

Controlling energy requires measuring or estimating

its consumption. This section describes Cinder’s

implementation and its energy model. The Cinder

kernel runs on AMD64, i386, and ARM

architectures. All source code is freely avail- able

under open-source licenses. Our principal

experimental platform is the HTC Dream (Google

G1), a modern smart- phone based on the Qualcomm

MSM7201A chipset.

6.1 ENERGY ACCOUNTING

Energy accounting on the HTC Dream is difficult due

to the closed nature of its hardware. It has a two-

processor design. The operating system and

applications run on an ARM11 processor. A secure,

closed ARM9 coprocessor manages the most energy

hungry, dynamic, and informative components (e.g.

GPS, radio, and battery sensors). The ARM9, for

example, exposes the battery level as an integer from

0 to 100.

6.2 POWER MODEL

Our energy model uses device states and their

duration to estimate energy consumption. We

measured the Dream’s energy consumption during

various states and operations. All measurements were

taken using an Agilent Technologies E3644A, a DC

power supply with a current sense resistor that can be

sampled remotely via an RS-232 interface. We

sampled both voltage and current approximately

every 200 ms, and aggregated our results from this

data. While idling in Cinder, the Dream uses about

699 mW and another 555 mW when the backlight is

on. Spinning the CPU increases consumption by 137

mW. Memory-intensive instruction streams increase

CPU power draw by 13% over a simple arithmetic

loop.

6.3 PERIPHERAL POWER

The baseline cost of activating the radio is

exceptionally high: small isolated transfers are about

1000 times more expensive, per byte, than large

transfers. Results demonstrate that the overhead

involved dominates the total power cost for flows

lasting less than 10 seconds in duration, regardless of

the bitrate.

An application powers up the radio by sending a

single 1-byte UDP packet. The secure ARM9

automatically returns to a low power mode after 20

seconds of inactivity. Because the ARM9 is closed,

Cinder cannot change this inactivity timeout. With

this workload, it costs 9.5 joules to send a single

byte! One lesson from this is that coordinating

applications to amortize energy start-up costs could

greatly improve energy efficiency. In x5.5 we

demonstrate how Cinder can use reserves and taps for

exactly this purpose.

6.4 MOBILITY AND POWER MODEL

IMPROVEMENTS

Cinder’s aim is to leverage advances in energy

accounting to allow users and applications to

provision and manage their limited budgets. Accurate

energy accounting is an orthogonal and active area of

research. Cinder is adaptable and can take advantage

of new accounting techniques

or information exposed by device manufacturers.

VII.APPLICATIONS

To gain experience with Cinder’s abstractions, we

developed applications using reserves and taps.

7.1 ENERGYWRAP

Taking advantage of the composability of Cinder’s

resource graph, the energy wrap utility allows any

application to be sandboxed even if it is buggy or

malicious. Energywrap takes a rate limit and a path to

an application binary. The utility creates a new

reserve and attaches it to the reserve in which

energywrap started by a tap with the rate given as

input. After forking, energywrap begins drawing

resources from the newly allocated reserve rather

than the original re- serve of the parent process and

executes the specified program.

Figure.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101030 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2130

(a) A web browser configured to run for at least

6 hours on a 15 kJ battery. The web browser

further ensures that its plugin cannot use

more than 10% of its energy.

(b) (b) Adding 0.1x backward proportional taps

promotes sharing of excess energy unused

by the browser and plugin.

7.2 ENERGY-AWARE APPLICATIONS

Using Cinder, developers can gain fine grained

control of resources within their applications,

providing a better experience to end users. This

includes adaptive policies for pro- grams where

partial or degraded results are still useful, andoffer a

compromise between battery life and user experience.

For example, smart applications may scale the quality

of streaming video or reduce texture quality in a

game when available energy is low, since the user

can still watch a video or play a game when

insufficient resources are available to run at full

fidelity.

FIGURE.

 RSS is running in the foreground so the task

manager has set its tap to give it additional power.

Mail is running in the background, and can only

draw energy from the background reserve. This

ensures that actual battery consumption matches the

user’s expectation that the visible application is

responsible for most energy consumption.

VIII. EXPREIENCE DEVLPOING ON A

MOBILE

We ported Cinder to the HTC Dream mobile phone.

Because developing a kernel for a mobile phone

platform is a nontrivial task that is rarely attempted,

we describe our process here in detail. To run Cinder

on the HTC Dream, we first ported the kernel to the

generic ARM architecture (2,380 additional lines of

C and assembly).MSM7201A-specific kernel device

support for timers, serial ports, framebuffer,

interrupts, GPIO pins, and keypad required another

1,690 lines of C. Cinder implements the

GSM/GPRS/EDGE radio functionality in userspace

with Android driver ports.

8.1CINDER-LINUX VS CINDER-HISTAR

Cinder was initially implemented on HiStar because

several key behaviors of the platform are naturally

expressible using HiStar’s abstractions. One such

feature of Cinder is resource delegation between

principals. Consider a common situation where a

client process P requires work to be performed on its

behalf by a daemon process D. A real world example

is the radio interface layer daemon on the Android

platform. Cinder must ensure P is charged for any

work D performs on its behalf – or, equivalently, it

must ensure that P provides the resources that D’s

code uses to run. HiStar’s abstractions achieve this

behavior cleanly and simply. A process in HiStar is a

container, containing an address space and one or

more threads. IPC is performed through special gates

defined by the process – a thread belonging to

process P can enter a gate defined by process D, after

which the thread has access to D’s address space,

though while under control of D’s code text. When

process P requires service from daemon D a thread,

T, belonging to P enters D’s address space via a gate.

Cinder debits T for work it performs as usual even

though it executes under the control of D’s code,

correctly billing consumption to P.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101030 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2131

IX. RELATED WORK

We group related work into three categories: resource

management, energy accounting, and energy

efficiency.

9.1 RESOURCE MANAGMENT

Cinder’s taps and reserves build on the abstraction of

resource containers [Banga 1999]. Like resource

containers, they provide a platform for attributing

resource consumption to a specific principal. By

separating resource management into rates and

quantities, however, Cinder allows applications to

delegate with reserves, yet reclaim unused resources.

This separation also makes policy decisions much

easier. Since resource containers serve both as limits

and reservations, hierarchical composition either

requires a single policy (limit or reserve) or ad hoc

rules (a guaranteed CPU slot cannot be the child of a

CPU usage limit). Linux has recently incorporated

“cgroups” [Menage 2008] into the mainline kernel,

which are similar to resource containers, but group

processes rather than threads.

9.2 MEASUREMENT,MODELLING AND

ACCOUNTING

Accurately estimating a device’s energy consumption

is an ongoing area of research. Early systems, such as

ECOSystem [Zeng 2002], use a simple linear

combination of device states. Most modern phone

operating systems, such as Symbian and OS X,

follow this approach. PowerScope improves CPU

energy accuracy by correlating instrumented traces of

basic blocks with program execution [Flinn 1999b].

9.3 ENERGY EFFICIENCY

There is rich prior work on improving the energy

efficiency of individual components, such as CPU

voltage and frequency scaling [Flautner 2002; Govil

1995], spinning down disks [Douglis 1995; Helmbold

1996], or carefully selecting memory pages [Lebeck

2000]. Phone operating systems today tend to depend

on much simpler, but still effective optimization

schemes than in the research literature, such as hard

timeouts for turning off devices. The exact models or

mechanisms used for energy efficiency are

orthogonal to Cinder: they allow applications to

complete more work within a given power budget.

The image viewer described in x5.3 is an example of

an energy-adaptive application, as is typical in the

Odyssey system [Flinn 1999a].

X. FUTURE WORK

We believe that the reserve and tap abstractions may

be fruitfully applied to other resource allocation

problems beyond energy consumption. For instance,

the high cost of mobile data plans makes network bits

a precious resource. Applications should not be able

to run up a user’s bill due to expensive data tariffs,

just as they should not be able to run down the

battery unexpectedly. Since data plans are frequently

offered in terms of megabyte quotas, Cinder’s

mechanisms could be repurposed to limit application

network access by replacing the logical battery with a

pool of network bytes.

XI. CONCLUSION

Cinder is an operating system for modern mobile

devices. It uses techniques similar to existing systems

to model device energy use, while going beyond the

capabilities of current operating systems by providing

an IPC system that fundamentally accounts for

resource usage on behalf of principals. It extends this

accounting to add subdivision and delegation, using

its reserve and tap abstractions.We have described

and applied this system to a variety of applications

demonstrating, in particular, their ability to partition

applications to energy bounds even with complex

policies. Additionally, we showed Cinder facilitates

policies which enable efficient use of expensive

peripherals despite non-linear power models.

REFRENCES

1.[Com 1988] THE EXECUTIVE COMPUTER;

Compaq Finally Makes a Laptop.

http://www.nytimes.com/1988/10/23/ business/the-

executive-computer-compaq-finally-makes-a-

laptop.html, 1988.

2.[Fla 2009] Adobe and HTC Bring Flash Platform to

Android, June 2009.

http://www.adobe.com/aboutadobe/pressroom/

pressreleases/pdfs/200906/062409AdobeandHTC.pdf

.

3.[App 2010] Apple Previews iPhone OS 4, April

2010.

© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002

IJIRT 101030 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2132

http://www.apple.com/pr/library/2010/04/08iphoneos

.html.

4.[Economou 2006] Dimitris Economou, Suzanne

Rivoire, and Christos Kozyrakis. Full-system power

analysis and modeling for server environments. In

Proceedings of the 2nd Workshop on Modeling,

Benchmarking and Simulation, Boston, MA, 2006.

5.[Flautner 2002] Krisztian Flautner and Trevor

Mudge. Vertigo: automatic performance-setting for

linux. In Proceedings of the 5
th

 Symposium on

Operating Systems Design and Implementation,

pages 105–116, Boston, MA, 2002.

6.[Flinn 1999a] Jason Flinn and M. Satyanarayanan.

Energy-aware adaptation for mobile applications. In

Proceedings of the 17
th

 ACM Symposium on

Operating Systems Principles, pages 48– 63,

Charleston, SC, 1999.

7.[Flinn 1999b] Jason Flinn and M. Satyanarayanan.

PowerScope: A Tool for Profiling the Energy Usage

of Mobile Applications. In Proceedings of the 2nd

IEEE Workshop on Mobile Computer Systems and

Applications, New Orleans, LA, 1999.

8.[Govil 1995] Kinshuk Govil, Edwin Chan, and Hal

Wasserman. Comparing algorithm for dynamic

speed-setting of a low-power CPU. In Proceedings of

the 1st Conference on Mobile Computing and

Networking, pages 13–25, Berkeley, CA, 1995.

9.[Helmbold 1996] David P. Helmbold, Darrell D. E.

Long, and Bruce Sherrod. A dynamic disk spin down

technique for mobile computing. In Proceedings of

the 2nd Conference on Mobile Computing and

Networking, pages 130–142, Rye, NY, 1996.

10.[Lebeck 2000] Alvin R. Lebeck, Xiaobo Fan,

Heng Zeng, and Carla Ellis. Power aware page

allocation. In Proceedings of the 9th International

Conference on Architectural Support for

Programming Languages and Operating Systems,

pages 105– 116, Cambridge, MA, 2000.

11.[Snowdon 2009] David C. Snowdon,

etienne

Le seaur

Petters, and Gernot Heiser. Koala: a platform for OS-

level power management. In Proceedings of the 4th

ACM European Conference on Computer Systems,

pages 289–302, Nuremberg, Germany, 2009.

