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Abstract-  We present Cinder, an operating system for 

mobile phones and devices, that allows users and 

applications to control and manage limited device 

resources such as energy. We argue that controlling 

energy allocation is an important and increasingly 

useful feature for operating systems, especially on 

mobile devices. We present two new low-level 

abstractions in the Cinder operating system, taps and 

reserves, which store and distribute energy for 

application use. We identify three key properties of 

control  isolation, delegation, and subdivision  and show 

how using these abstractions can achieve them. We also 

show how the architecture of the HiStar information 

flow control kernel lends itself well to control energy. 

We prototype and evaluate Cinder on a popular 

smartphone, the Android G1. 

 

Index Terms- Energy, mobile phones, power 

management. 

I. INTRODUCTION 

In the past decade, mobile phones have emerged as a 

dominant computing platform for end users. These 

very personal computers depend heavily on graphical 

user interfaces, always-on connectivity, and long 

battery life, yet in essence run operating systems 

originally designed for workstations (Mac OS 

X/Mach) or time-sharing systems (Linux/Unix). 

Historically, operating systems have had poor energy 

management and accounting. This is not surprising, 

as their APIs standardized before energy was an 

issue. This limited control and visibility of energy is 

especially problematic for mobile phones, where 

energy and power define system lifetime. In the past 

decade, phones have evolved from low-function 

proprietary applications to robust multi- programmed 

systems with applications from thousands of sources. 

Apple announced that as their App Store houses 

185,000 apps for the iPhone with more than 4 billion 

application downloads. This shift away from single-

vendor software to complex application platforms 

means that the phone’s software must provide 

effective mechanisms to manage and control energy 

as a resource. Such control will be even more 

important as the danger grows from buggy or poorly 

designed applications to potentially malicious ones. 

In the past year, mobile phone operating systems 

began providing better support for understanding 

system energy use. Android, for example, added a UI 

that estimates application energy consumption with 

system call and event instrumentation, such as 

processor scheduling and packet counts. This is a step 

forward, helping users understand the mysteries of 

mobile device lifetime. 

 This paper presents Cinder, a new operating system 

de- signed for mobile phones and other energy-

constrained computing devices. Cinder extends the 

HiStar secure kernel to provide new abstractions for 

controlling and accounting for energy: reserves and 

taps. Taps and reserves compose together to allow 

applications to express their intentions, enabling 

policy enforcement by the operating system. 

II. A CASE FOR ENERGY CONTROL 

This section motivates the need for low-level, fine-

grained energy control in a mobile device                          

operating system. It starts by reviewing some of the 

prior work on energy visibility and the few examples 

of coarse energy control. The next section describes 

reserves and taps, abstractions which provide these 

mechanisms at a fine granularity. 

There is rich prior work on addressing the visibility 

problem of attributing consumption to application 

principals. Control, in contrast, has seen much less 

effort. Early systems like EcoSystem proposed 

highlevel application power limits. Mobile 

applications today, however, are much more 

complex: they spawn and invoke other services and 

have a much richer set of peripherals to manage. We 

believe that for users and applications to effectively 

control power, an operating system must provide 

three mechanisms: isolation, subdivision, and 

delegation. We motivate these mechanisms through 
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three application examples that we follow through the 

rest of the paper. Isolation is a fundamental part of an 

operating system. Memory and IPC isolation provide 

security, while cpu and disk space isolation ensure 

that processes cannot starve others by hogging 

needed resources.  

III. DESIGN 

Cinder is based on the HiStar operating system which 

is a secure exo-kernel that controls information flow 

using a label mechanism. The kernel provides a small 

set of kernel object types to applications, from which 

the rest of system is built: threads, address spaces, 

segments, gates, containers, and devices. Cinder adds 

two new kernel object types: reserves and taps. This 

section gives an overview of HiStar, describes 

reserves and taps, gives examples of how they can be 

used, and provides details on their security and 

information flow. 

 

3.1 HISTAR 

 

HiStar is composed of six first-class kernel objects, 

all protected by a security label. Its segments, 

threads, address spaces, and devices are similar to 

those of conventional kernels. Containers enable 

hierarchical control over deallocation of kernel 

objects – objects must be referenced by a container or 

face garbage collection. Gates provide protected 

control transfer of a thread from one address space to 

a named offset in another; they are the basis for all 

IPC. 

 

3.2 RESERVES 

 

A reserve describes a right to use a given quantity of 

a resource, such as energy. When an     application 

consumes a resource the Cinder kernel reduces the 

values in the corre- sponding reserve. The kernel 

prevents threads from performing actions for which 

their reserves do not have sufficient resources. 

Reserves, like all other kernel objects, are protected 

by a security label (§3.5) that controls which threads 

can ob- serve, use, and manipulate it.  

 

3.3 TAPS 

 

A tap transfers a fixed quantity of resources between 

two reserves per unit time, which controls the 

maximum rate at which a resource can be consumed. 

For example, an appli- cation reserve may be 

connected to the system battery via a tap supplying 1 

mJ/s (1 mW). 

Taps aid in subdividing resources between 

applications since partitioning fixed quantities is 

impractical for most policies. A user may want her 

phone to last at least 5 hours if she is surfing the web; 

the amount of energy the browser should receive is 

relative to the length of time it is used. Providing 

resources as a rate naturally addresses this. Taps are 

made up of four pieces of state: a rate, a source 

reserve, a sink reserve, and a security label 

containing the privileges necessary to transfer the 

resources between the source and sink 

 

 

FIGURE: 

 
A 15 kJ battery, or root reserve, connected to a 

reserve via a tap. The battery is protected from being 

misused by the web browser. The web browser draws 

energy from an isolated reserve which is fed by a 750 

mW tap. 

 

5.4 ACCESS CONTOL & SECURITY 

 

Any thread can create and share reserves or taps to 

subdivide and delegate its resources. This ability 

introduces a problem of fine grained access control. 

To solve this, reserves and taps are protected by a 

security label, like all other kernel objects. The label 

describes the privileges needed to observe, modify, 

and use the reserve or tap. Since a tap actively moves 

resources between a source and sink reserve, it needs 

privileges to observe and modify both reserve levels; 

to aid with this, taps can have privileges embedded in 

them. 
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VI.  CINDER ON HTC DREAM 

Controlling energy requires measuring or estimating 

its consumption. This section describes Cinder’s 

implementation and its energy model. The Cinder 

kernel runs on AMD64, i386, and ARM 

architectures. All source code is freely avail- able 

under open-source licenses. Our principal 

experimental platform is the HTC Dream (Google 

G1), a modern smart- phone based on the Qualcomm 

MSM7201A chipset. 

 

6.1  ENERGY ACCOUNTING 

 

Energy accounting on the HTC Dream is difficult due 

to the closed nature of its hardware. It has a  two-

processor design. The operating system and 

applications run on an ARM11 processor. A secure, 

closed ARM9 coprocessor manages the most energy 

hungry, dynamic, and informative components (e.g. 

GPS, radio, and battery sensors). The ARM9, for 

example, exposes the battery level as an integer from 

0 to 100.  

 

6.2 POWER MODEL 

 

Our energy model uses device states and their 

duration to estimate energy consumption. We 

measured the Dream’s energy consumption during 

various states and operations. All measurements were 

taken using an Agilent Technologies E3644A, a DC 

power supply with a current sense resistor that can be 

sampled remotely via an RS-232 interface. We 

sampled both voltage and current approximately 

every 200 ms, and aggregated our results from this 

data. While idling in Cinder, the Dream uses about 

699 mW and another 555 mW when the backlight is 

on. Spinning the CPU increases consumption by 137 

mW. Memory-intensive instruction streams increase 

CPU power draw by 13% over a simple arithmetic 

loop.  

 

6.3 PERIPHERAL POWER 

 

The baseline cost of activating the radio is 

exceptionally high: small isolated transfers are about 

1000 times more expensive, per byte, than large 

transfers. Results demonstrate that the overhead 

involved dominates the total power cost for flows 

lasting less than 10 seconds in duration, regardless of 

the bitrate. 

An application powers up the radio by sending a 

single 1-byte UDP packet. The secure ARM9 

automatically returns to a low power mode after 20 

seconds of inactivity. Because the ARM9 is closed, 

Cinder cannot change this inactivity timeout. With 

this workload, it costs 9.5 joules to send a single 

byte! One lesson from this is that coordinating 

applications to amortize energy start-up costs could 

greatly improve energy efficiency. In x5.5 we 

demonstrate how Cinder can use reserves and taps for 

exactly this purpose. 

 

6.4 MOBILITY AND POWER MODEL 

IMPROVEMENTS 

 

Cinder’s aim is to leverage advances in energy 

accounting to allow users and applications to 

provision and manage their limited budgets. Accurate 

energy accounting is an orthogonal and active area of 

research. Cinder is adaptable and can take advantage 

of new accounting techniques 

or information exposed by device manufacturers.  

VII.APPLICATIONS 

To gain experience with Cinder’s abstractions, we 

developed applications using reserves and taps. 

 

7.1 ENERGYWRAP 

 

Taking advantage of the composability of Cinder’s 

resource graph, the energy wrap utility allows any 

application to be sandboxed even if it is buggy or 

malicious. Energywrap takes a rate limit and a path to 

an application binary. The utility creates a new 

reserve and attaches it to the reserve in which 

energywrap started by a tap with the rate given as 

input. After forking, energywrap begins drawing 

resources from the newly allocated reserve rather 

than the original re- serve of the parent process and 

executes the specified program.  

Figure. 
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(a) A web browser configured to run for at least 

6 hours on a 15 kJ battery. The web browser 

further ensures that its plugin cannot use 

more than 10% of its energy. 

(b)  (b) Adding 0.1x backward proportional taps 

promotes sharing of excess energy unused 

by the browser and plugin. 

 

7.2 ENERGY-AWARE APPLICATIONS 

Using Cinder, developers can gain fine grained 

control of resources within their applications, 

providing a better experience to end users. This 

includes adaptive policies for pro- grams where 

partial or degraded results are still useful, andoffer a 

compromise between battery life and user experience. 

For example, smart applications may scale the quality 

of streaming video or reduce texture quality in a 

game when available energy is low, since the user 

can still watch a video or play a game when 

insufficient resources are available to run at full 

fidelity. 

FIGURE. 

 

 

    RSS is running in the foreground so the task 

manager has set its tap to give it additional power. 

Mail is          running in the background, and can only 

draw energy from the background reserve. This 

ensures that actual battery consumption matches the 

user’s expectation that the visible application is 

responsible for most energy consumption. 

VIII.  EXPREIENCE DEVLPOING ON A 

MOBILE 

We ported Cinder to the HTC Dream mobile phone. 

Because developing a kernel for a mobile phone 

platform is a nontrivial task that is rarely attempted, 

we describe our process here in detail. To run Cinder 

on the HTC Dream, we first ported the kernel to the 

generic ARM architecture (2,380 additional lines of 

C and assembly).MSM7201A-specific kernel device 

support for timers, serial ports, framebuffer, 

interrupts, GPIO pins, and keypad required another 

1,690 lines of C. Cinder implements the 

GSM/GPRS/EDGE radio functionality in userspace 

with Android driver ports.  

 

8.1CINDER-LINUX VS CINDER-HISTAR 

 

Cinder was initially implemented on HiStar because 

several key behaviors of the platform are naturally 

expressible using HiStar’s abstractions. One such 

feature of Cinder is resource delegation between 

principals. Consider a common situation where a 

client process P requires work to be performed on its 

behalf by a daemon process D. A real world example 

is the radio interface layer daemon on the Android 

platform. Cinder must ensure P is charged for any 

work D performs on its behalf – or, equivalently, it 

must ensure that P provides the resources that D’s 

code uses to run. HiStar’s abstractions achieve this 

behavior cleanly and simply. A process in HiStar is a 

container, containing an address space and one or 

more threads. IPC is performed through special gates 

defined by the process – a thread belonging to 

process P can enter a gate defined by process D, after 

which the thread has access to D’s address space, 

though while under control of D’s code text. When 

process P requires service from daemon D a thread, 

T, belonging to P enters D’s address space via a gate. 

Cinder debits T for work it performs as usual even 

though it executes under the control of D’s code, 

correctly billing consumption to P.  
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IX.  RELATED WORK 

We group related work into three categories: resource 

management, energy accounting, and energy 

efficiency. 

 

9.1 RESOURCE MANAGMENT 

 

Cinder’s taps and reserves build on the abstraction of 

resource containers [Banga 1999]. Like resource 

containers, they provide a platform for attributing 

resource consumption to a specific principal. By 

separating resource management into rates and 

quantities, however, Cinder allows applications to 

delegate with reserves, yet reclaim unused resources. 

This separation also makes policy decisions much 

easier. Since resource containers serve both as limits 

and reservations, hierarchical composition either 

requires a single policy (limit or reserve) or ad hoc 

rules (a guaranteed CPU slot cannot be the child of a 

CPU usage limit). Linux has recently incorporated 

“cgroups” [Menage 2008] into the mainline kernel, 

which are similar to resource containers, but group 

processes rather than threads.  

 

9.2 MEASUREMENT,MODELLING AND 

ACCOUNTING 

 

Accurately estimating a device’s energy consumption 

is an ongoing area of research. Early systems, such as 

ECOSystem [Zeng 2002], use a simple linear 

combination of device states. Most modern phone 

operating systems, such as Symbian and OS X, 

follow this approach. PowerScope improves CPU 

energy accuracy by correlating instrumented traces of 

basic blocks with program execution [Flinn 1999b].  

 

9.3 ENERGY EFFICIENCY 

 

There is rich prior work on improving the energy 

efficiency of individual components, such as CPU 

voltage and frequency scaling [Flautner 2002; Govil 

1995], spinning down disks [Douglis 1995; Helmbold 

1996], or carefully selecting memory pages [Lebeck 

2000]. Phone operating systems today tend to depend 

on much simpler, but still effective optimization 

schemes than in the research literature, such as hard 

timeouts for turning off devices. The exact models or 

mechanisms used for energy efficiency are 

orthogonal to Cinder: they allow applications to 

complete more work within a given power budget. 

The image viewer described in x5.3 is an example of 

an energy-adaptive application, as is typical in the 

Odyssey system [Flinn 1999a]. 

X.  FUTURE WORK 

We believe that the reserve and tap abstractions may 

be fruitfully applied to other resource allocation 

problems beyond energy consumption. For instance, 

the high cost of mobile data plans makes network bits 

a precious resource. Applications should not be able 

to run up a user’s bill due to expensive data tariffs, 

just as they should not be able to run down the 

battery unexpectedly. Since data plans are frequently 

offered in terms of megabyte quotas, Cinder’s 

mechanisms could be repurposed to limit application 

network access by replacing the logical battery with a 

pool of network bytes.  

XI.  CONCLUSION 

Cinder is an operating system for modern mobile 

devices. It uses techniques similar to existing systems 

to model device energy use, while going beyond the 

capabilities of current operating systems by providing 

an IPC system that fundamentally accounts for 

resource usage on behalf of principals. It extends this 

accounting to add subdivision and delegation, using 

its reserve and tap abstractions.We have described 

and applied this system to a variety of applications 

demonstrating, in particular, their ability to partition 

applications to energy bounds even with complex 

policies. Additionally, we showed Cinder facilitates 

policies which enable efficient use of expensive 

peripherals despite non-linear power models. 
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