
© 2014 IJIRT | Volume 1 Issue 7 | ISSN: 2349-6002

IJIRT 101212 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 183

 Tree concept in data structure

Rubi Dhankhar , Sapna Kamra , Vishal Jangra

Abstract- This paper purposes the tree concept in data

structure. Terminology used in tree concept is also

discussed in details. Difference between data type and

data structure , tree traversal concept are also

explained in details. There are many different ways to

represent trees. These methods are also dicussed in this

paper.

Index Terms- tree , node , path , traversal , null ,

parent node.

I. INTRODUCTION

 In computer science, a tree is a broadly used abstract

data type (ADT) or data structure implementing this

ADT that simulates a hierarchical tree structure, with

a root value and subtrees of children, represented as a

set of linked nodes. A tree data structure can be

explained recursively (locally) as a collection of

nodes (starting at a root node), where each node is a

data structure consisting of a value, together with a

list of references to nodes (the "children"), with the

constraints that no reverence is duplicated, and none

points to the root.

II. DISCUSSION

Definition:

Not a tree: two non-connected parts, A→B and

C→D→E

Not a tree: undirected cycle 1-2-4-3

Not a tree: cycle B→C→E→D→B

Not a tree: cycle A→A

Each linear list is trivially a tree

A tree is a (possibly non-linear) data structure made

up of nodes or vertices and edges outside having any

cycle. The tree having no nodes is called the null or

empty tree. A tree that is not empty consists of a root

node and potentially many levels of additional nodes

that form a order.

Terms used in Trees

 Root – The top node in a tree is known as

root node.

 Parent – The opposite notion of child.

 Siblings – Nodes having same parent.

 Descendant – a node accessible by repeated

proceeding from parent to child.

 Ancestor – a node accessible by repeated

proceeding from child to parent.

 Leaf – a node have no children.

 Internal node – a node having at least one

child.

 External node – a node accompanying no

children.

 Edge – associate between one node to

another.

 Path – a sequence of nodes and edges

associating a node with a descendant.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
http://en.wikipedia.org/wiki/Node_%28computer_science%29
http://en.wikipedia.org/wiki/Connectivity_%28graph_theory%29#Definitions_of_components.2C_cuts_and_connectivity
http://en.wikipedia.org/wiki/File:Directed_graph,_disjoint.svg
http://en.wikipedia.org/wiki/File:Directed_graph_with_branching.jpg
http://en.wikipedia.org/wiki/File:Directed_graph,_cyclic.svg
http://en.wikipedia.org/wiki/File:Graph_single_node.svg
http://en.wikipedia.org/wiki/File:Directed_Graph_Edge.svg

© 2014 IJIRT | Volume 1 Issue 7 | ISSN: 2349-6002

IJIRT 101212 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 184

 Level – The level of a node is explained by

1 + the number of connections between the

node and the root.

 Height of tree –The height of a tree is the

number of edges on the longest downward

path among the root and a leaf.

 Height of node –The height of a node is the

number of edges on the longest downward

path among that node and a leaf.

 Depth –The depth of a node is the figure of

edges from the node to the tree's root node.

Fig: A Tree Consisting of a Set of Nodes

and Edges

Data type vs. data structure

There is a distinction among a tree as an abstract data

type and as a data structure, analogous to the

distinction between a list and a linked list.

As a data type, a tree has a value and children, and

the children are themselves trees; the value and

children of the tree are integrated as the value of the

root node and the subtrees of the children of the root

node. To confess finite trees, one must either allow

the list of children to be empty (in which case trees

can be required to be non-empty, an "empty tree"

instead being represented by a forest of zero trees), or

allow trees to be empty, in which case the list of

children can be of permanent size (branching factor,

especially 2 or "binary"), if desired.

As a data structure, a linked tree is a group of nodes,

where each node has a value and a list of reverences

to other nodes (its children). This data structure

actually explaines a directed graph, because it may

have loops or several reverences to the same node,

just as a linked list may have a loop. Thus there is

also the requirement that no two reverences point to

the same node (that each node has at most a single

parent, and in fact exactly one parent, except for the

root), and a tree that violates this is "corrupt".

Terminology

A node is a structure which may contain a value or

condition, or represent a disconnected data structure

(which could be a tree of its own). Each node in a

tree has zero or more child nodes, which are lower it

in the tree (by convention, trees are drawn growing

downwards). A node having a child is called the

child's parent node A node has merely one parent.

An internal node is any node of a tree that has child

nodes. Similarly, an external node an outer node, is

any node that does not have child nodes.

The apical node in a tree is called the root node.

Depending on definition, a tree may be recommended

to have a root node, or may be allowed to be empty,

in which case it does not compulsorily have a root

node. Being the apical node, the root node will not

have a parent. It is the node at which algorithms on

the tree begin, because as a data structure, one can

only pass from parents to children. Note that some

algorithms (such as post-order depth-first search)

start at the root, but first visit leaf nodes (access the

value of leaf nodes), only visit the root last (i.e., they

first access the children of the root, but only ingress

the value of the root last). All other nodes can be

attained from it by following edges or links. In

diagrams, the root node is normally drawn at the top.

In some trees, such as heaps, the root node has

distinct properties.

The height of a node is the length of the longest

earthward path to a leaf from that node. The height of

the root is known as the height of the tree. The depth

of a node is the distance of the path to its root. This is

commonly required in the manipulation of the

various self-balancing trees, AVL Trees in particular.

The root node has depth zero, leaf nodes have height

zero, and a tree with only a single node (therefore

both a root and leaf) has depth and height zero.

Commonly, an empty tree (tree with no nodes, if such

are allowed) has depth and height −1.

Representations

There are many different ways to represent trees;

common representations represent the nodes as

demoniacally allocated records with pointers to their

children, their parents, or both, or as items in an

array, with relationships between them determined by

their positions in the array (e.g., binary heap).

http://en.wikipedia.org/wiki/List_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Branching_factor
http://en.wikipedia.org/wiki/Node_%28computer_science%29
http://en.wikipedia.org/wiki/Node_%28computer_science%29
http://en.wikipedia.org/wiki/Heap_%28data_structure%29
http://en.wikipedia.org/wiki/AVL_Trees
http://en.wikipedia.org/wiki/Dynamic_memory_allocation
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Binary_heap

© 2014 IJIRT | Volume 1 Issue 7 | ISSN: 2349-6002

IJIRT 101212 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 185

Traversal methods

Tree traversal

Stepping through the items of a tree, distinctly of the

connections between parents and children, is called

walking the tree, and the action is a walk of the tree.

generally, an operation might be performed when a

pointer arrives at a particular node. A walk in which

each parent node is passed through before its children

is called a pre-order walk; a walk in which the

children are traversed before their respective parents

are traversed is called a post-order walk; a walk in

which a node's left subtree, then the node itself, and

finally its right subtree are traversed is called an in-

order traversal.A level-order walk efficiently

performs a breadth-first search over the entirety of a

tree; nodes are traversed level by level, where the

root node is visited first, followed by its direct child

nodes and their siblings, followed by its grandchild

nodes and their siblings, etc., instill all nodes in the

tree have been traversed.

III. APPLICATIONS

 Representing stratified data

 Storing data in a way that makes it easily

reachable

 exhibiting sorted lists of data

 As a workflow for complotting digital

images for visual effects

 Chasing algorithms

IV. CONCLUSION

This paper concludes Trees are used in many areas of

computer science, consisting operating systems,

graphics, database systems, and computer

networking. Tree data structures have many same

things with their botanical cousins. A tree data

structure consist a root, branches, and leaves. The

difference among a tree in nature and a tree in

computer science is that a tree data structure has its

root at the top and its leaves on the bottom.

REFERENCES

[1] ece.colorado.edu/bart/book

[2] tree concept - en.Wikipedia.org

http://en.wikipedia.org/wiki/Tree_traversal
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Visual_effects

