
© 2014 IJIRT | Volume 1 Issue 7 | ISSN: 2349-6002

IJIRT 101270 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 399

PAGE BASED DISTRIBUTED SHARED MEMORY

Diksha Verma, Anjli Tyagi, Deepak Sharma

Department Of Information Technology, Dronacharya College Of Engineering

Abstract- The distributed shared-memory programming

paradigm has been receiving rising attention. Recent

developments have resulted in viable distributed shared

memory languages that are gaining vendors support, and

several early compilers have been developed. This

programming model has the potential of achieving a

balance between ease-of-programming and performance.

As in the shared-memory model, programmers need not

to explicitly specify data accesses. Meanwhile,

programmers can exploit data locality using a model that

enables the placement of data close to the threads that

process them, to reduce remote memory accesses. In

computer architecture, distributed shared memory

(DSM) is a form of memory architecture where the

(physically separate) memories can be addressed as one

(logically shared) address space. Here, the term shared

does not mean that there is a single centralized memory

but shared essentially means that the address space is

shared (same physical address on two processors refers to

the same location in memory).

DSM system represents a successful hybrid of two

parallel computer classes i.e. shared memory and

distributed memory. It provides the shared memory

abstraction in system with physically distributed

memories and consequently combine the advantages of

both approaches. DSM system is the memory system that

is physically distributed but logically implements a single

shared address space [5, 8, 11].

I. INTRODUCTION

The idea behind DSM is simple: Try to emulate the

cache of a multiprocessor using the MMU and

operating system software

In a DSM system, the address space is divided up into

chunks, with the chunks being spread over all the

processors in the system. When a processor references

an address that is not local, a trap occurs, and the DSM

software fetches the chunk containing the address and

restarts the faulting instruction, which now completes

successfully. Distributed Global Address Space

(DGAS), is a similar term for a wide class of software

and hardware implementations, in which each node of

a cluster has access to shared memory in addition to

each node's non-shared private memory.

Software DSM systems can be implemented in an

operating system (OS), or as a programming library

and can be thought of as extensions of the underlying

virtual memory architecture. When implemented in the

OS, such systems are transparent to the developer;

which means that the underlying distributed memory is

completely hidden from the users. In contrast, Software

DSM systems implemented at the library or language

level are not transparent and developers usually have to

program differently. However, these systems offer a

more portable approach to DSM system

implementation.

Software DSM systems also have the flexibility to

organize the shared memory region in different ways.

The page based approach organizes shared memory

into pages of fixed size. In contrast, the object based

approach organizes the shared memory region as an

abstract space for storing shareable objects of variable

sizes. Another commonly seen implementation uses a

tuple space, in which the unit of sharing is a tuple.

Shared memory architecture may involve separating

memory into shared parts distributed amongst nodes

and main memory; or distributing all memory between

nodes. A coherence protocol, chosen in accordance

with a consistency model, maintains memory

coherence.

II. REPLICATION

One improvement to the basic system that can improve

performance considerably is to replicate chunks that

are read only, read-only constants, or other read-only

data structures. Another possibility is to replicate not

only read-only chunks, but all chunks. As long as reads

are being done, there is effectively no difference

between replicating a read-only chunk and replicating a

read-write chunk. However, if a replicated chunk is

suddenly modified, inconsistent copies are in existence.

The inconsistency is prevented by using some

consistency protocols.

Finding the Owner

The simplest solution for finding the owner is by doing

a broadcast, asking for the owner of the specified page

to respond. An optimization is not just to ask who the

owner is, but also to tell whether the sender wants to

read or write and say whether it needs a copy of the

page. The owner can then send a single message

transferring ownership and the page as well, if needed.

Broadcasting has the disadvantage of interrupting each

processor, forcing it to inspect the request packet. For

all the processors except the owner's, handling the

interrupt is essentially wasted time. Broadcasting can

use up considerable bandwidth, depending on the

hardware.

http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Node_%28networking%29
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Tuple_space
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Coherence_protocol
http://en.wikipedia.org/wiki/Consistency_model
http://en.wikipedia.org/wiki/Memory_coherence
http://en.wikipedia.org/wiki/Memory_coherence
http://cs.gmu.edu/cne/modules/dsm/green/memcohe.html

© 2014 IJIRT | Volume 1 Issue 7 | ISSN: 2349-6002

IJIRT 101270 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 400

There could be several other possibilities as well. In

one of these, a process is designated as the page

manager. It is the job of the manager to keep track of

who owns each page. When a process, P, wants to read

a page it does not have or wants to write a page it does

not own, it sends a message to the page manager telling

which operation it wants to perform and on which

page. The manager then sends back a message telling

the ownership, as required. A problem with this

protocol is the potentially heavy load on the page

manager, handling all the incoming requests. This

problem can be reduced by having multiple page

managers instead of just one.

Another possible algorithm is having each process

keep track of the probable owner of each page.

Requests for ownership are sent to the probable owner,

which forwards them if ownership has changed. If

ownership has changed several times, the request

message will also have to be forwarded several times.

At the start of execution and every n times ownership

changes, the location of the new owner should be

broadcast, to allow all processors to update their tables

of probable owners.

Finding the Copies

Another important detail is how all the copies are

found when they must be invalidated. Again, two

possibilities present themselves. The first is to

broadcast a message giving the page number and ask

all processors holding the page to invalidate it. This

approach works only if broadcast messages are totally

reliable and can never be lost.

The second possibility is to have the owner or page

manager maintain a list or copyset telling which

processors hold which pages. When a page must be

invalidated, the old owner, new owner, or page

manager sends a message to each processor holding the

page and waits for an acknowledgment. When each

message has been acknowledged, the invalidation is

complete.

Page Replacement

In a DSM system, as in any system using virtual

memory, it can happen that a page is needed but that

there is no free page frame in memory to hold it. When

this situation occurs, a page must be evicted from

memory to make room for the needed page. Two

subproblems immediately arise: which page to evict

and where to put it.

To a large extent, the choice of which page to evict can

be made using traditional virtual memory algorithms,

such as some approximation to the least recently used

algorithm. As with conventional algorithms, it is worth

keeping track of which pages are 'clean' and which are

'dirty'. In the context of DSM, a replicated page that

another process owns is always a prime candidate to

evict because it is known that another copy exists.

Consequently, the page does not have to be saved

anywhere. If a directory scheme is being used to keep

track of copies, the owner or page manager must be

informed of this decision, however. If pages are located

by broadcasting, the page can just be discarded.

The second best choice is a replicated page that the

evicting process owns. It is sufficient to pass

ownership to one of the other copies but informing that

process, the page manager, or both, depending on the

implementation. The page itself need not be

transferred, which results in a smaller message.

III. DATA GRANULARITY

Data granularity deals with amount of data process

during the execution phase. It can be related to the

amount of data exchanged between nodes at the end of

execution phase as it is data that will be processed in

the execution phase. In the framework the amount of

data exchanged between nodes is usually a multiple of

the physical page-size. The system using paging,

regardless of the amount of sharing, the amount of data

exchanged between nodes is usually a multiple of the

physical page size of the basic architecture. Problem

arises when system that consists very small data

granularity are running on system that support very

large physical pages. If the shared data is stored in

contiguous memory location then most data can be

stored in few physical pages. As a result the system

performance degrades as the common physical page

thrashes between different processors. To overcome

with this difficulty the framework partitioned the

shared data structure on to disjoint physical pages.

IV. CONSISTENCY PROBLEMS IN

DISTRIBUTED SHARED MEMORY

To get acceptable performance from a Distributed

Shared Memory System, data have to be placed near

the processors who are using it. This is done by

replicating and replacing data for read and write

operations at a number of processors. Since several

copies of data are stored in the local cache, read and

write access can be performed efficiently. The caching

technique increases the efficiency of Distributed

Shared Memory Systems, but it also raises the

consistency problems, which happens when a

processor writes (modifies) the replicated shared data.

How and when this change is visible by other

processors who also have a copy of the shared data

becomes an important issue. A memory is consistent if

the value returned by a read operation is always the

same as the value written by the most recent write

operation to the same address [2]. In a distributed

shared memory system, a processor has to access the

shared virtual memory when page faults happen.

© 2014 IJIRT | Volume 1 Issue 7 | ISSN: 2349-6002

IJIRT 101270 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 401

To reduce the communication cost initiated by this

reason, it seems naturally to increase the page size.

However, large page size produces the contention

problem when a number of processes try to access the

same page and it also triggers the false sharing

problem, which, in turn, may increase the number of

messages because of aggregation. [4].

V. CONCLUSION

As the framework uses memory page as the unit of data

sharing, the entire address space (spread over all to the

processor) is divided into pages. Whenever the virtual

memory manager (VMM) finds a request to an address

space which is not local, it asks the DSM manager to

fetch that page from the remote machine. Such kind of

page fault handling is simple and similar to what is

done for local page faults. So for improving

performance, the framework suggests for doing

replication of the pages so that same page does not

have to be transferred again and again. Keeping

multiple copies of same page leads to the issue of

consistency between these copies. This consistency

issue is maintained by write-update coherence

protocol. This is done by updating all processor about

the write operation. The page manager maintains a list

or copy set telling which processors hold which pages.

When a page must be invalidated, the old owner, new

owner, or page manager sends a message to each

processor holding the page and waits for an

acknowledgment. When each message has been

acknowledged, the invalidation is complete. In this

DSM framework, it may happen that a page is needed

but that there is no free page frame in memory to hold

it. When this situation occurs, a page must be ejected

from memory to make room for the needed page. Two

sub problems immediately arise: which page to eject

and where to put it. In the context of framework, a

replicated page that another process owns is always a

prime candidate to eject because it is known that

another copy exists.

REFERENCES

[1] K. Li and P. Hudak. Memory coherence in shared

virtual memory systems. ACM Transactions on

Computer Systems, 7(4):321–359, November 1989.

[2] Changhun Lee "Distributed Shared Memory"

Proceedings on the 15th CISL Winter Workshop

Kushu, Japan, February 2002.

[3] Yvon Jégou "Implementation of Page Management

in Mome, a User-Level DSM" INRIA November 2003.

[4] Bal Gopal, Pankaj Kumar “Perfect Memory

Consistency Model for Improving Parallelism in DSM

System” Proceedings of Third international conference

on information processing (ICIP-09), 7-9 Aug 2009.

[5] Sarita V. Adve, Vijay S. Paiand Parthasarathy

Ranganathan “Recent Advances in Memory

Consistency Models for Hardware Shared Memory

Systems” Proceedings of the IEEE, VOL. 87,

NO. 3, MARCH 1999, pp. 445-455.

[6] Bal Gopal and Pankaj Kumar “Framework for

Improving Parallelism by Write-Update Coherence

Protocol in Distributed Shared Memory System”

IJRTE, Issue. 1, Vol. 2, June 2009 pp. 201-204

