
© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101612 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 83

Overview of Compiler

Taruna Rohdia ,Tushar Mehmi , Upender Yadav

Dronacharya College Of Engineering

Abstract- Compiler is a bridge between high level and

low level language. Compilers are essential

programming tool which improves software

productivity by hiding low level details. It is a tool for

designing and evaluating computer architecture. Little

language and program translations can be used to solve

other problems. Compiler construction is a widely used

software engineering exercise, but because most

students will not be compiler writers, care must be

taken to make it relevant in a core curriculum

I. INTRODUCTION

Compiler translates an executable program in one

language into an executable program in another

language. The term compilation denotes the

conversion of an algorithm expressed in a human-

oriented source language to an equivalent algorithm

expressed in a hardware-oriented target language.

Programming languages are tools used to construct

formal descriptions of finite computations

(algorithms). Each computation consists of

operations that transform a given initial state into

some final state. Interpreter reads an executable

program and produces the results of running that

program.

II. COMPILER

In addition to a compiler; several other programs may

be required to create an executable target program. A

source program may be divided into modules stored

in separate files. The task of collecting the source

program is sometimes entrusted to a distinct program

called a preprocessor. The target program created by

compiler may require further processing before it can

be run. The compiler creates assembly code that is

translated by an assembler into machine code and

then linked together with some library routines into

the code that actually runs on the machine.

Tasks of compiler:- A compilation is usually

implemented as a sequence of transformations

(SL;L1);(L1;L2);:::; (Lk; TL), where SL is the source

language and TL is the target language. Each

language Li is called an intermediate language.

Intermediate languages are conceptual tools used in

decomposing the task of compiling from the source

language to the target language. The design of a

particular compiler determines which (if any)

intermediate language programs actually appear as

concrete text or data structures during compilation.

Any compilation can be broken down into two major

tasks:

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101612 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 84

1) Analysis: Discover the structure and

primitives of the source program,

determining its meaning.

2) Synthesis: Create a target program

equivalent to the source program.

This breakdown is useful because it separates our

concerns about the source and target languages. The

analysis concerns itself solely with the properties of

the source language. It converts the program text

submitted by the programmer into an abstract

representation embodying the essential properties of

the algorithm. This abstract representation may be

implemented in many ways, but it is usually

conceptualized as a tree. The structure of the tree

represents the control and data flow aspects of the

program, and additional information is attached to the

nodes to describe other aspects vital to the

compilation.

III. PHASES OF COMPILER

IV. ANALYSIS OF SOURCE PROGRAM

Linear Analysis:-

In which the stream of characters making up the

source program is read from left to right and grouped

into tokens that are sequences of characters having a

collective meaning. In compiler, linear analysis is

also called LEXICAL ANALYSIS or SCANNING.

Hierarchical Analysis:-

In which characters or tokens are grouped

hierarchically into nested collections with collective

meaning. In compiler, hierarchical analysis is called

parsing or syntax analysis.

Semantic analysis:-

In which certain checks are performed to ensure that

the components of a program fit together

meaningfully.

Syntax Analysis:-

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101612 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 85

It involves grouping the tokens of the source program

into grammatical phrases that are tied by the compiler

to synthesize output. Usually the grammatical phrases

of the source program are represented by a parse tree.

Compiler-Construction Tools:-

 Software development tools are available to

implement one or more compiler phases

◦ Scanner generators

◦ Parser generators

◦ Syntax-directed translation engines

◦ Automatic code generators

◦ Data-flow engines

V. CONCLUSION

It gives the overview of compiler. Compiler is a

bridge between high level and low level language.

This report shows the phases of compiler, basic view

of compiler and tasks of a compiler.

REFERENCE

1) http://www.ijsrp.org/research-paper-

0413/ijsrp-p16108.pdf

2) http://research.cs.wisc.edu/vertical/papers/2

012/pldi12-idem.pdf

3) http://users.elis.ugent.be/~leeckhou/papers/h

ipeac08-eyerman.pdf

4) http://suif.stanford.edu/~courses/cs243/lectu

res/L1-handout.pdf

5) http://symbolaris.com/course/Compilers/wai

tegoos.pdf

6) http://people.cs.pitt.edu/~mock/cs2210/lectu

res/lecture1.pdf

