
© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 102297 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1591

Optimization and verification of Bus Interface Unit

(BIU) to increase performance of the in-house

developed 32-bit RISC processor core

Leema Rachel Mathew
1
, Roopashree

2

1
M.Tech, VLSI and Embedded System, SCEM Mangalore

2
Asst Prof Dept of ECE, SCEM Mangalore

Abstract – In this paper, we propose optimization,

verification and FPGA prototyping of BIU by

analyzing and reducing the number of clock cycles

required for the execution of each memory access for

instruction and data without changing the existing

functionality of the processor so as to enhance its

performance.

Index Terms – BIU, Optimization, FPGA prototyping

I. INTRODUCTION

 The Bus present in the architecture is the

common pathway through which the information

flow takes place between the various components

or interfaces to which it is connected. The BIU

present in the processor core provides the

functionality of generating I/O address to transfer

data to and from the memory. The BIU in the

processor is responsible for responding to all

signals that go to the processor, and generating all

signals that go from processor to the other parts of

the system.

 The processor performance also depends

on the speed of the BIU i.e. the time taken by the

BIU to transfer the data to and from the external

memory. Hence by increasing the speed of the BIU

the performance of the processor can be increased.

The processor architecture analyzed in this paper is

interfaced to two external memories namely

instruction memory and data memory. Each

memory is accessed through the BIU by the

processor. The speed of the access is dependent by

the number of clock cycles taken to execute each

statement in the BIU code written to implement the

desired BIU architecture. The optimization aims at

the reduction in the number of clock cycles

required to execute each instruction.

 After analysis it was found that the BIU of

the in-house developed 32-bit RISC processor takes

6 clock cycles for instruction fetch and 13 clock

cycles for data fetch. The aim of this paper is to

optimize the BIU present in the 32-bit RISC

processor is optimized to fetch instruction and data

from the memory in one clock cycle rather than the

number of clock cycle mentioned before hence

improves the performance of the processor. The

optimization is done by step wise reducing the

number of clock cycle for fetching instruction and

data and verifying the functionality.

II. ANALYSIS OF EXISTING BIU

[5]The read and write into the memory is

controlled by the signal RdWr_. During the read

operation the RdWr_ signal is set high. The As_

and Ds_ signals are asserted to indicate valid

address and data are available on the address and

data bus. The address bus will have valid address

and the data bus will be provided with the valid

data by the external memory based on the address

sent by the BIU. Once the valid data is obtained

from the peripheral then the Dsack_ input signal is

set low to terminate the cycle initiated by the BIU.

The asynchronous Dsack_ signal is generated by

the external decoder unit which is outside the

processor. After the Dsack_ signal is asserted the

As_ and Ds_ is de-asserted for the next clock cycle

and then a new cycle is initiated by the BIU with

the next address.

Similarly, during write operation the

signal RdWr_ is set low. The As_ and Ds_ signal

are asserted. The address bus will have valid

address and the data bus will give the data from the

processor to write into the memory. Once the data

to be written into the memory is written the Dsack_

signal is set for one clock cycle. After the Dsack_

signal is set As_ and Ds_ signals are de-asserted for

next clock signal and then a new transaction is

generated by the BIU.

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 102297 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1592

Fig.1. RdWr_ operation in processor through BIU

In this processor for each memory access

based on data memory or instruction memory it

takes 13 and 6 clock cycles respectively through

BIU. The BIU takes 6 cycles to fetch the

instruction from external memory and takes 13

cycles to load or store data to external memory.

Though the data access from memory is restricted

by the access time of the memories but in this case

even if the external memory was capable of

providing within one cycle access time, the

processor BIU used to take the above mentioned

number of cycles for instruction and data access.

This latency in BIU was due to its internal state

machine implementation. So even if the core was

provided a clock of xMHz the idle performance of

the core would be (x/6)MHz for instruction access

and (x/13)MHz for data access.

III. BIU CODE OPTIMIZATION

EnPipe is an internal signal generated by

the BIU used by the processor core to move

forward the pipeline. Initially the EnPipe was

dependent on asynchronous Dsack_ signal. In order

to reduce the number of clock cycle the

dependency of EnPipe to the Dsack signal had to be

removed. So that EnPipe is only dependent on the

state machine. Once the EnPipe is made

independent of Dsack signal the cycles were

reduced by removing and optimizing the states for

the state for both instruction fetch access and data

fetch access path separately. The following section

lists the stepwise approach of optimization.

Fig.2. Processor Architecture

A. Making Dsack synchronous from asynchronous

 The Dsack signal which is an input to the

BIU is initially asynchronous. When As_ and Ds_

are set the Dsack_ signal is set. Dsack_ signal

remains low till the As_ and Ds_ goes high. This

dependency is done by removing double flopping

of the asynchronous Dsack_ signal. Initially since

Dsack_ was asynchronous so double flopping of

the Dsack_ signal was done internally to remove

metastability. Making Dsack_ synchronous from

asynchronous removed the double flopping

requirement and hence enhances each transaction

done by BIU by 2 clock cycles. So after this

modification the instruction fetch cycles reduced to

4 from 6 cycles and data fetch or store cycles

reduced to 11 from 13.

B. Removing the dependency on Dsack

 After making Dsack from asynchronous to

synchronous the number of cycles was found to be

4 and 11 for instruction fetch and data fetch

respectively. The state machine was then

optimized to remove the dependency on Dsack

signal by fixing the number of states required to

achieve the cycle requirement so that the state can

be further removed to reduce the number of clock

cycle required.

C. Reducing the instruction fetch cycles

 The instruction fetch takes 4 clock cycles

after removing the dependency on the Dsack signal.

Now the cycles are only dependent on the state

machine. The clock cycle was reduced from 4 to 3

by making changes in the state machine. The

variation in the functionality is checked and the

BIU code is modified as per the required

functionality. Each time the reduction in the clock

cycle is done the functionality is checked and the

required modifications are done in the BIU code to

retain the functionality. The instruction fetch

cycles were reduced finally to 1 clock cycle by

reducing the number of states and analyzing and

resolving the dependencies encountered by doing

the modification.

D. Reducing the memory access cycle

 The BIU takes 11 cycles for the memory

access. After removing the dependency on the

Dsack the number of clock cycles reduced to 8 by

removing the dummy states present in the previous

BIU design. Similar to instruction fetch cycles the

memory access cycle is also reduced one at a time.

Each time the clock cycle is reduced the

functionality is checked and the modification is

done. The memory access cycle is reduced to 1

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 102297 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1593

cycle by the step wise approach and the

functionalities were also checked to remove the

dependencies.

 Fig.2 shows the previous architecture of

the processor core and Fig.3 shows the modified

architecture for single cycle optimization of the

BIU.

Fig.3. Modified Processor Architecture

IV. BIU CODE STANDALONE VERIFICATION

 The standalone verification is done by

writing test bench for the code and driving each

input and checking if the output signals are

generated as per expectation or not. The BIU code

inputs and outputs are studied. The way the output

changes as the input changes is also studied. Once

the relation between the input and the output of the

BIU code is studied then the standalone verification

is done. The standalone verification was done by

writing test bench for the BIU and the required

input is given with different values and the outputs

are observed. The output responses were checked

and the required outputs are obtained.

V. BIU CODE VERIFICATION INTEGRATED

WITH THE PROCESSOR CORE

The BIU and the ALU along with the

UART controller and the interrupt controller are

part of the processor core. The processor core is

interfaced to two external memories namely

instruction memory and data memory through an

external decoder (Ext Decoder). The external

decoder decodes address ranges sent out by the

processor core and generates the chip selects for the

instruction memory and data memory.

The BIU code optimized and verified

stand alone was integrated with the processor core

in the above mentioned verification setup by

replacing the old BIU module with the new one.

Reset was then applied to enable the processor to

re-execute the instructions loaded in instruction

memory from beginning.

VI. SINGLE CYCLE EXECUTION

MODIFICATION AND VERIFICATION

 The processor initially consists of a

separate BIU and External Decoder. The BIU takes

both the program memory and data memory

address from the processor. The BIU then based on

MemInstn signal (Memory Instantiation) signals

decides whether to access data memory or program

memory and therefore the address is multiplexed

internally. A 32 bit address is generated by the

BIU and this 32 bit address is given to the External

Decoder which is outside the processor. The

external decoder gives this address to the program

memory or data memory.

 Here the program memory and data

memory are separate for the processor. The outputs

from the memory are then given to the External

Decoder. The External decoder gives the data to the

BIU which is then given back to the processor core.

The data which has to be written into the memory

is also sent from the BIU to the memory through

the External decoder.

The loading, storing and fetching the

instruction from the memory is done through

separate BIU code and the External Decoder.

Instead of having separate BIU code this code can

be integrated to the processor core so that the

memory access can be done directly by the

processor based on the requirement. The signals

from the BIU to the instruction memory and data

memory are identified. These signals are to be

mapped from processor directly to the memory.

VII. FPGA PROTOTYPING

FPGA prototyping of the processor core

with the newly modified BIU was done at every

stage of the modification done in a step wise

approach as mentioned before to test the working

of the modified BIU in the processor core on

FPGA. The instruction memory and the data

memory as mentioned in the verification section of

the integrated processor core section were replaced

with BRAMs available on FPGA [4].

Xilinx Virtex5 FPGA based prototyping

platform was used to validate the processor core

with the modified BIU. Oscillators of 20MHz

frequency available on the prototyping platform

board was used as input to the PLL used in the

FPGA prototyping setup to generate frequencies of

100MHz and 1.84MHz used as processor core

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 102297 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1594

frequency and UART controller frequency

respectively.

VIII. SIMULATION RESULTS

 Fig.4 shows the simulation result obtained

after making the Dsack signal synchronous from

asynchronous.

Fig.4. Simulation result in which Dsack is

synchronous

Fig. 5 shows the simulation result obtained

by removing the separate BIU and External

Decoder.

Fig.5. Simulation result without BIU and External

Decoder

Fig.6. Debug code brought up after FPGA

prototyping.

IX. CONCLUSION

 The BIU plays an important role in the

processor architecture. The performance of

processor was increased by optimizing the BIU and

verifying the optimized code.

REFERENCES

[1] John L Hennessey, David Patterson, Ed.4,

Computer Organisation and Architecture,

McGraw-Hill, 2012

[2] Steve Furber, Ed.2, ARM processor

Architecture, Addison Wesley, 2000

[3] Verilog Language Reference Manual

[4] Block RAMs on FPGA – Xilinx app note

[5] In-house developed processor user manual

[6] Xilinx virtex5 FPGA manual

[7] QuestaSim user manual

