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I. INTRODUCTION 

Banach fixed point theorem is an important tool in 

the theory of metric spaces, it guarantees the 

existence and uniqueness of fixed points of self maps 

of metric spaces. The concept of asymptotically 

regular at a point in a space was first introduced by 

Browder and Petryshyn and the concept of G – metric 

space was introduced by Z.Mustafa and B.Sims. In 

the present paper we have proved some results in 

Complete G-metric space under asymptotic regularity 

with some contractive condition 

II. DEFINITION AND PRELIMINARIES 

Definition: 2.1 

Let X be a non empty set, and let G : X x X x X →R
+
 

be a function satisfying the following properties. 

(1) G(x, y, z) = 0 if x = y = z. 

(2) G(x, x, y) > 0; for all x, y ∈ X with x ≠ y. 

(3) G(x, x, y) ≤ G(x, y, z) for all x, y, z         

with y ≠ z 

(4) G(x, y, z) = G(x, z, y) = G(y, x, z) = … 

(Symmetry in all three variables) 

(5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all    x, 

y, z, a ∈ X ( rectangle inequality)  

Then the function G is called a generalized metric or 

more specifically a G-metric on X and the pair (X, G) 

is called a G-metric space. 

Definition: 2.2 

Let (X, G) be a G-metric space and let {xn} be a 

sequence of points of X. A point x in X is said to be 

the limit of the sequence {xn}                                     

if                 ,   ) = 0 and one say that the 

sequence {xn} is G-convergent to x. 

Definition: 2.3 

Let (X, G) be a G-metric space and let {xn} is called 

G-Cauchy if given ϵ > 0, there is N ∈ ℕ such that  

G(xn, xm, xℓ) < ϵ , for all n, m, ℓ ≥ N.                           

i.e G(xn, xm, xℓ) → 0, as n, m, ℓ →  . 

Definition: 2.4 

A G-metric space (X, G) is called symmetric           

G-metric space                                                            

if G(x, y, y) = G(y, x, x) for all x, y ∈ X. 

Definition: 2.5 

A mapping T:X→X of a symmetric G-metric space 

(X, G) into itself is said to be asymptotically regular 

at a point x ∈ X,                                                           

if     
   

   
G(T

n+1
x, T

n
x, T

n
x)  =  

 
   

   
G(T

n
x, T

n+1
x, T

n+1
x) = 0.           

Where T
n
x is n

th
 iterate of T at x ∈ X 

Example: 2.6 

Let R be the set of all real numbers.                    

Define G: R x R x R → R
+
 by                                

G(x, y, z) =                  , for all         

x, y, z ∈ R. then (R, G) is symmetric G-metric space. 

Let T be self-mapping on R with Tx = x/2 then 

G(T
n+1

x, T
n
x, T

n
x)  

=  
 

     
 

     
 

     
 

     
 

   
 

    

 =    
 

     
 

    = 
  

   
 

 
    = 

 

   

   
   

G(T
n+1

x, T
n
x, T

n
x)  = 

   
   

 

      

Hence T is asymptotically regular at a point x ∈ R 

Proposition: 2.7 

Let (X, G) be G-metric space, then the following are 

equivalent  

(i) {xn} is G-convergent to x. 

(ii) G(xn, xn, x) → 0 as n →  . 

(iii) G(xn, x, x) → 0 as n →  . 

(iv) G(xm, xn, x) → 0 as m, n →  . 
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Proposition: 2.8 

Every G-metric space (X, G) induces a metric space 

(X, dG) defined by                                                      

dG(x, y) = G(x, y, y) + G(y, x, x) ∀ x, y ∈ X 

Proof. 

(i) dG(x, y) = G(x, y, y) + G(y, x, x) ≥ G(x, x, x)  = 0  

            (by rectangular inequality)            

(ii) dG(x, x) = G(x, x, x) + G(x, x, x) = 0.  

 (i.e  dG(x, y) = 0 iff  x = y.)            

(iii) dG(x, y) = G(x, y, y) + G(y, x, x)                              

       = G(y, x, x) + G(x, y, y) = dG(y, x)    

(iv) dG(x, y) = G(x, y, y) + G(y, x, x)  

      ≤ G(x, z, z) + G(z, y, y) + G(y, z, z)          

                   + G(z, x, x)   

        ≤ [G(x, z, z) + G(z, x, x)]   

      + [ G(z, y, y) + G(y, z, z)] 

       ≤  dG(x, z) + dG(z, y) 

Hence  (X, G) induces a metric space (X, dG) 

III. THE MAIN RESULT 

Theorem: 3.1 

Let (X, G) be a complete symmetric G-metric space 

and T: X→ X be a mapping such that the following 

condition is satisfied 

G(Tx, Ty, Ty)  

≤ aG(x, y, y)+ b[G(x, Tx, Tx) + G(y, Ty, Ty)] 

        + c[G(x, Ty, Ty) + G(y, Tx, Tx)] 

       + d[G(x, Tx, Ty) + G(y, Ty, Tx)]……(1) 

for all x, y in X where 0 ≤ 2a + b + 3c + 3d < 1;                  

0 ≤ a, b, c, d < 1 then T has a unique fixed point in X, 

if T is asymptotically regular at some point in X. 

Proof.  

Consider the sequence {T
n
x} and assume 

that T is asymptotically regular at some point x0 ∈ X.  

for n, m ≥ 1, 

G(T
n
x0, T

m
x0, T

m
x0) 

≤ a G(T
n-1

x0, T
m-1

x0, T
m-1

x0)  

+ b[G(T
n-1

x0, T
n
x0, T

n
x0) + G(T

m-1
x0, T

m
x0, T

m
x0)]                                

+ c[G(T
n-1

x0, T
m
x0, T

m
x0) + G(T

m-1
x0, T

m
x0, T

n
x0)] 

+ d[G(T
n-1

x0, T
n
x0, T

m
x0)  + G(T

m-1
x0, T

m
x0, T

n
x0)] 

 

≤ a [G(T
n-1

x0, T
n
x0, T

n
x0) + G(T

m-1
x0, T

m-1
x0, T

m
x0)  

 + G(T
m
x0, T

m
x0, T

n
x0)] 

+ b[G(T
n-1

x0, T
n
x0, T

n
x0) + G(T

m-1
x0, T

m
x0, T

m
x0)]                                

+ c[G(T
n-1

x0, T
n
x0, T

n
x0) + G(T

n
x0, T

m
x0, T

m
x0)                       

+ G(T
m-1

x0, T
m
x0, T

m
x0) + G(T

m
x0, T

n
x0, T

n
x0)]  

+ d[G(T
n-1

x0, T
n
x0, T

n
x0) + G(T

n
x0, T

n
x0, T

m
x0)        

+ G(T
m-1

x0, T
m
x0, T

m
x0) + G(T

m
x0, T

m
x0, T

n
x0)] 

 

i.e (1 – a –  2c – 2d) G(T
n
x0, T

m
x0, T

m
x0) 

≤ (a + b + c + d)[G(T
n-1

x0, T
n
x0, T

n
x0)   

                  + G(T
m-1

x0, T
m
x0, T

m
x0)]   

i.e G(T
n
x0, T

m
x0, T

m
x0) 

≤  
         

           
  [G(T

n-1
x0, T

n
x0, T

n
x0)   

                  + G(T
m-1

x0, T
m
x0, T

m
x0)]   

Taking limit as m, n →   such that  

   
     

 G(T
n
x0, T

m
x0, T

m
x0) → 0……………(2) 

 Since T is asymptotically regular at x0. 

i.e  G(T
n-1

x0, T
n
x0, T

n
x0) → 0 as n →  , 

      G(T
m-1

x0, T
m
x0, T

m
x0) → 0 as m →  . 

Now 

G(T
n
x0, T

m
x0, T

ℓ
x0)  

      ≤ G(T
n
x0, T

m
x0, T

m
x0)+ G(T

m
x0, T

m
x0, T

ℓ
x0)      

Taking limit as n, m, ℓ→  . 

G(T
n
x0, T

m
x0, T

ℓ
x0) → 0   Refer to  (2) 

So T
n
x0 is a G-cauchy sequence. 

Since (X,G) is complete there exist a point u ∈ X 

such that u = 
   

   
T

n
x0 

Suppose that u is not a fixed point of T (Tu ≠ u) then 

by condition (1) and rectangular inequality we obtain 

G(u, Tu,  Tu) ≤ G(u, T
n
x0, T

n
x0) + G(T

n
x0, Tu, Tu) 

≤ G(u, T
n
x0, T

n
x0) + a G(T

n-1
x0, u, u)     

 + b[G(T
n-1

x0, T
n
x0, T

n
x0) + G(u, Tu, Tu)] 

 + c[G(T
n-1

x0, Tu, Tu) + G(u, T
n
x0, T

n
x0)] 

 + d[G(T
n-1

x0, T
n
x0, Tu) +  G(u, T

n
x0, Tu)]    

Taking the limit as n →   we obtain 

G(u, Tu, Tu) < (b + c + 2d) G(u, Tu, Tu) 

This contradiction implies that Tu = u. 

Hence u is a fixed point of T. 

To prove the uniqueness of fixed point, suppose T 

has second fixed point v in X, then by (1) 

G(u, v, v) = G(Tu, Tv, Tv) 

≤ aG(u, v, v) + b[G(u, Tu, Tu) + G(v, Tv, Tv)  

 + c[G(u, Tv, Tv) + G(v, Tu, Tu)]  

 +d[G(u, Tu, Tv) + G(v, Tu, Tv)] 

≤ (a + 2c + 2d)G(u, v, v) 

This contradiction implies that u = v. 

Thus T has unique fixed point.  

This completes the proof of Theorem 3.1 

 

Theorem: 3.2 

Let (X, G) be a complete symmetric G-metric space 

and T: X→ X be a mapping such that the following 

condition is satisfied 

G(Tx, Ty, Ty)  
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≤ aG(x, y, y) + b[G(x, Tx, Tx) + G(y, Ty, Ty)] 

         + c[G(x, Ty, Ty) + G(y, Tx, Tx)] 

        + d[G(x, Tx, Ty) + G(y, Ty, Tx)]…(1) 

for all x, y in X where 0 ≤ 2a + b + 3c + 3d < 1;                  

0 ≤ a, b, c, d < 1. if T is asymptotically regular at 

some point in x in X and sequence of iterates {T
n
x} 

has a sub-sequence converging to a point z ∈ X, then 

z is a unique fixed point of T and {T
n
x} are also 

converges to z. 

Proof: 

 Let T be asymptotically regular at x ∈ X and 

consider the sequence {T
n
x}. 

We shall assume that 
   

   
       and Tz ≠ z. 

Then by condition (1) and rectangular inequality    

we obtain 

G(z, Tz, Tz) ≤ G(z,          ) +               

≤ G(z,            + aG(            

 + b[G(      ,            + G(z, Tz, Tz)] 

 +c[G(              + G(z,             

 +d[G(                + G(z,         ] 

≤ G(z,            + aG(             

        +b[G(      ,            + G(z, Tz, Tz)] 

        +c[G(      ,            + G(                 

       + G(z,             

        +d[G(                  + G(              

       +G(z,         ] 

Taking limit as k →   we obtain 

G(z, Tz, Tz) ≤ (b + c + d)G(z, Tz, Tz) 

This contradiction implies that Tz = z. 

By Theorem: 3.1, z is the unique fixed point by using 

condition (1) and rectangular inequality    we obtain. 

To prove  {T
n
x} converges to z 

Let G(z, T
n
x, T

n
x) ≤ G(z, Tz, Tz) + G(Tz, T

n
x, T

n
x) 

≤  G(z, Tz, Tz) + aG(z, T
n-1

x, T
n-1

x)  

 + b[ G(z, Tz, Tz) + G( T
n-1

x, T
n
x, T

n
x)] 

 +c[G(z, T
n
x, T

n
x) + G(T

n-1
x, Tz, Tz)] 

 +d[G(z, Tz, T
n
x) + G(T

n-1
x, T

n
x, Tz)] 

≤ G(z, Tz, Tz)    

 + a[G(z, T
n
x, T

n
x) + G(T

n
x, T

n-1
x, T

n-1
x)]

 + b[G(z, Tz, Tz) + G(T
n-1

x, T
n
x, T

n
x)] 

 + c[G(z, T
n
x, T

n
x) + G(Tz, T

n
x, T

n
x)   

            + G(T
n
x, T

n-1
x, T

n-1
x)]  

 +d[G(z, Tz, Tz) + G(Tz, Tz, T
n
x)     

         + G(T
n-1

x, T
n
x, T

n
x) +  G(T

n
x, T

n
x, 

Tz)] 

G(z, T
n
x, T

n
x) ≤  

       

           
              

                  + 
         

           
 G(T

n
x, T

n-1
x, T

n-1
x) 

Taking limit as n →  ,               

   
   

G(z, T
n
x, T

n
x) → 0.                                          

⇒ {T
n
x} converges to z.            

This completes the proof. 
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