
© October 2015 | IJIRT | Volume 2 Issue 5 | ISSN: 2349-6002

IJIRT 142652 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 134

Exception Handling

Gourav Agghi

Abstract- This paper proposes about the exception

handling and what is its role in java. When an error

occur within a method, the method creates an object

and hands it off to the runtime system. this object called

an exception object,contains information about the

error and including its types.

Definition- An exception is an event, which occurs

during the execution of a program, that disrupts the

normal flow of the program’s instructions.

I. INTRODUCTION

After a method throws an exception ,the runtime

system attempts to find something to handle it. The

set of possible “somethings”to handle the exception

is the ordered list of methods that had been called to

get to the method where the error occurred. The list

of method is also known as stack. The runtime

system searches the call stack for a method that

contain a block of code that can handle the exception.

This block of code is called an exception handler.

The search begin with the method in which the error

occur and proceeds through the call stack in the

reverse order in which the method were called.when

an appropriate handler is found, the runtime system

passes the exception to the handler. An exception

handler is considered appropriate if the type of the

exception object thrown matches the type that can be

handled by the handler.

1.1. The Catch or Specify Requirement

 Valid Java programming language code must honor

the Catch or Specify Requirement. This means that

code that might throw certain exception must be

enclosed by either of the following:

 A try statement that catches the exception.

The try must provide a handler for the

exception, as described in Catching and

Handling Exceptions.

 A method that specifies that it can throw the

exception. The method must provide a throw

clause that lists the exception, as described

in specifying the Exception Thrown by a

method.

Code that fails to honor the catch or specify

Requirement will not compile. Not all

exceptions are subject to the Catch or

Specify Requirement. To understand why,

we need to look at the three basic categories

of exceptions, only one of which is subject

to the requirement.

Exception Handling has three kind of

exceptions.

1.) Checked Exception

2.) Error Exception

3.) Runtime Exception.

 The first kind of exception is the checked

exception. These are exceptional conditions

that a well written application should

anticipate and recover from. For example,

suppose an application prompts a user for an

input file name ,then opens the file by

passing the name to the constructor for

java.io.FileReader object succeeds, and the

execution of the application proceeds

normally.But sometime the user supplies the

name of nonexistent file, and the constructor

throws java.io.FileNotFoundException. A

well written programwill catch this

exception and notify the user of this

mistake,possibly prompting for a corrected

file name.

 The second kind of exception is the error.

These are exceptional conditions that are

external to the application, and that the

application usually cannot anticipate or

recover from.For example, suppose that an

application successfully opens a file for

input, but is unable to read the filebecause of

hardware or system malfunction. The

unsuccessful read will throw

java.io.IOError. An application might

© October 2015 | IJIRT | Volume 2 Issue 5 | ISSN: 2349-6002

IJIRT 142652 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 135

choose to catch the exception, in order to

notify the user of the problem but it also

might make sense for the program to print a

stack trace and exit.

Errors are not subject to Catch or Specify

Requirement. Errors are those exceptions

indicated by error and its subclasses.

 The third kind of exception is the runtime

exception. These are exceptional conditions

that are internal to the application,and that

the application usually cannot anticipate or

recover from.These usually indicate

programming bugs,such as logic errors or

improper use of an API. For example,

consider the application described

previously that passes a file name to the

constructor for File Reader. If a logic errors

causes a null to be passed to the constructor,

the constructor will throw

NullPointerException. The application can

catch this exception, but it probably makes

more sense to eliminate the bugs that caused

the exception to occur.

Runtime exceptions are not subject to catch

or specify requirement. Runtime exception

are those indicated by RuntimeException

and its subclasses.

Errors and runtime exceptions are

collectively known as unchecked

exceptions.

1.2. Catching and Handling Exceptions

The section describes how to use the

three exception handler components-the

try,catch,and finally blocks-to write an

exception handler. then, the try-with

resources statement, introduced in java

SE 7,is explained. The try-with

resources statement is particularly

suited to situations that use closeable

resources such as streams.

1.3. The Try Block

The first step in constructing an

exception handler is to enclose the code

that might throw an exception within a

try block. In general, a try looks like the

following:

try{

 code

}

Catch and finally blocks…

The segment in the example labeled

code contain one or more legal line of

code that could throw an exception.

1.4. The Catch Block

You associate exception handlers with a

try block by providing one or more

catch blocks directly after the try block.

No code can be between the end of try

block and the beginning of the first

catch block.

try{

} catch(ExceptionType name) {

}catch (ExceptionType name) {

}

Each catch block is an exvception

handler that handles the type of

exception indicated bu its argument.

The argument type, ExceptionType,

declares the type of exception that the

handler can handle and ust be the name

of a class that inherits from the

Throwable class.The handler can refer

to the exception with name.

II. CONCLUSION

This paper concludes about the various topics of

Exception Handling. It also discuss about the

different types of blocks.

III. REFERENCES

[1]. https://en.wikipedia.org/wiki/Exception_handling

[2].

https://en.wikipedia.org/wiki/Exception_handling_sy

ntax

[3]

https://docs.oracle.com/javase/tutorial/essential/excep

tions/definition.html

