
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142659 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 78

Pointer Analysis for C Programs

Mohit Bansal

Student, Departnment Computer Science Engineering

Dronacharya College of Engineering, Gurgaon

Abstract- We present a pointer analysis algorithm

designed for source-to-source transformations. Existing

techniques for pointer analysis apply a collection of

inference rules to a dismantled intermediate form of the

source program, making them difficult to apply to

source-to-source tools that generally work on abstract

syntax trees to preserve details of the source program.

Our pointer analysis algorithm operates directly on the

abstract syntax tree of a C program and uses a form of

standard dataflow analysis to compute the desired

points-to information. We have implemented our

algorithm in a sourceto-source translation framework

and experimental results show that it is practical on

real-world examples.

I. INTRODUCTION

The role of pointer analysis in understanding C

programs has been studied for years, being the

subject of several PhD Thes is and nearly a hundred

research papers . This type of static analysis has been

used in a variety of applicationssuch as live variable

analysis for register allocation and constant

propagation, checking for potential runtime errors

(e.g., null pointer dereferencing), static schedulers

that need to track resource allocation and usage, etc.

Despite its applicability in several other areas,

however, pointer analysis has been targeted primarily

at compilation, be it software or hardware . In

particular, the use of pointer analysis (and in fact,

static analysis in general) for automated source code

transformations remains little explored. We believe

the main reason for this is the different program

representations employed in source-to-source tools.

Historically, pointer analysis algorithms have been

implemented in optimizing compilers, which

typically proceed by dismantling the program into

increasingly lower-level representations that

deliberately discard most of the original structure of

the source code to simplify its analysis. By contrast,

source-to-source techniques strive to preserve

everything about the structure of the original source

so that only minimal, necessary changes are made.

As such, they typically manipulate abstract syntax

trees that are little more than a structured

interpretation of the original program text. Such trees

are often manipulated directly through treeor term-

rewriting systems such as Stratego .In this paper, we

present an algorithm developed to perform pointer

analysis directly on abstract syntax trees. We

implemented our algorithm in a source-to-source tool

called Proteus , which uses Stratego as a back-end,

and find that it works well in practice.

II. EXISTING POINTER ANALYSIS

TECHNIQUES

Many techniques have been proposed for pointer

analysis of C programs . They differ mainly in how

they group related alias information. Figure1 shows a

C fragment and the points-to sets computed by four

well-known flow-insensitive algorithms.

Arrows in the figure represent pointer relationships

between the variables in the head and tail nodes: an

arc from

a to b means that variable a points-to variable b, or

may point-to that variable, depending on the specific

algorithm

 Some techniques encapusulate more than one

variable in a single node, as seen in Steensgaard’s

and Das’s approaches, in order to speed-up the

computation. These methods trade precision for

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142659 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 79

running time: variable x, for instance, pointsto a, b

and c on both techniques, although the code only

assigns a’s address to x.

Broadly, existing techniques can be classified as

constraint-solving or dataflow-based . Members of

both groups usually define a minimal grammarfor the

source language that includes only basic operators

and statements. They then build templates used to

match these statements. The templates are cast as

inference Rules or dataflow equation. The algorithms

consist of iterative applications of inference rulesor

dataflow equations on the statements of the program,

duringwhich pointer relationships are derived. This

approach assumes that the C program only contains

allowed statements. For instance, a=**b, with two

levels of dereference in the right-hand side, is

commonly parsed

Existing techniques generally require the preceding

statement to be dismantled into two sub-expressions,

each having at most one level of dereference.

It is difficult to employ such an approach to source-

tosource transformations because it is difficult to

correlate the results calculated on the dismantled

program with the original source. Furthermore, it

introduces needless intermediate variables, which can

increase the analysis cost. For source-to-source

transformations, we want to perform the analysis

close to the source level. It is particularly useful to

directly analyze the ASTs and annotate them with the

results of the analysis. Hence, we need to be able to

handle arbitrary compositions of statements.

Precision is another issue in source-to-source

transformations: we want the most precise analysis

practical because

otherwise we may make unnecessary changes to

thecode or, even worse, make incorrect changes. A

flowinsensitive analysis cannot, for example,

determine that a pointer is initialized before it is used

or that a pointer has different values in different

regions of the program. Both of these properties

depend on the order in which the statements of the

program execute. As a result, the approach we adopt

is flow-sensitive

2.1 Analysis Accuracy

Another source of approximation commonly found in

today’s approaches is the adoption of the so-called

non-visible

variables , later renamed to invisible variables or,

alternatively, extended parameters . When a function

call takes place, a parameter1 p of pointer type might

point to avariable v that is not in the scope of the

called function. To

keep track of such pointer relationships, special

symbolicnames are created in the enclosing scope

and then manipulated in place of v whenever p is

dereferenced. When the function call returns to the

caller, the information

kept in the symbolic name is ’mapped’ back to v. For

example, for a variable x with type int**, symbolic

names

1 x and 2 x with types int* and int would be created .

If an indirect reference, say *x, can lead to an outof-

scope variable w, the corresponding symbolic name 1

x is used to represent w.

There are some drawbacks with this approach: it adds

an overhead in the analysis due to this ’mapping’ and

’unmapping’ of information, and it can become too

approximateas the chain of function calls gets larger.

The following example shows how spurious aliases

can be generatedeven though symbolic variable 1 a is

not accessed within the called function.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142659 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 80

The adoption of invisible variables, however, is of

relevant importance if one’s priority is the efficiency

of the

interprocedural pointer analysis. The use of invisible

variables facilitates summarization of the effects of a

procedure

in the pointer relationships, and this enables the

analysis to avoid re-evaluating a function’s body in

some particular

cases . On the other hand, invisible variables can

cause some imprecision. We believe that pointer

analysis for source-to-source code

transformationshould be information-driven, i.e.,

precision of results should have a high priority. In

this sense, we eliminatethe use of invisible variables

at the expense of (potentiallly) having to re-evaluate

a function’s body multiple times.We rely on specially

created ’signatures’ in order to maintain pointer

relationships across function calls, and handle the

parameter passing mechanism as regular

assignments.

III. ANALYSIS OUTLINE

Following the approach of Emami et al. [6], our

analysis uses an iterative dataflow approach that

computes, for

each pointer statement, the points-to set generated

(gen) and removed (kill) by the statement. The net

effect of each statement is (in−kill)∪gen, where in is

the set of pointer relationships holding prior to the

statement. In this sense, it is flow-sensitive and

results in the following points-to sets for each

sequence point in the code fragment of Figure 1.

By operating directly on the AST, we avoid building

the control-flow graph for each procedure or the call-

graph for

the whole program. Clearly, the control-flow graph

can still be built if desired, since it simply adds an

extra and relatively thin layer as a semantic

attribution to the AST. Thus, from this specific point

of view, ASTs are not a necessity for the iterative

computation and handling of the program’s control

structure.

We assume the entire source code of the subject

application (multiple translation units, multiple files)

is resolved into a large AST that resides in memory ,

so that we are able to jump from one procedure to

another through tree

queries. The analysis starts off at the program’s main

function, iterating through its statements. If a

function call is

encountered, its body is recursively analyzed taking

into account pointers being passed as parameters as

well as global pointers. When the analysis reaches the

end of the function, it continues at the statement

following the function call. Below, we give an

overview of some aspects of the implementation.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142659 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 81

3.1 Points-to Graph Representation

We represent the points-to graph at a particular point

in the program using a table. Entries in the table are

triples

of the form _x,y,q_, where x is the source location

pointing to y, the destination location, and q is the

qualifier, which can be either must or may, which

indicates that either x is definitely pointing to y, or

that x merely may point to y (e.g., it may point to

something else or be uninitialized). Pointer relations

between variables in distinct scopes are encoded as

regular entries in the table by relying on unique

signatures for program variables. Below is a C

fragment for illustration

On the left is the source code for two procedures; in

the center are the memory contents during the

analysis; and on

the right are the points-to sets generated by each

statement. Note that each location of interest is

represented by an abstract signature and that each

pointer relationship holding between two locations is

represented by an entry in the table. For an if

statement, our algorithm makes two copies of the

table, analyzes the statements in the true and false

branches separately, then merges the resulting tables.

The merge operation is a special union wherein a

must triple has its qualifier demoted to may in case

only one of the branches generates (or fails to kill)

the triple. For and while statements are handled with

a fixed-point computation—a copy of the table is

made, the statements are analyzed, and the resulting

table is compared to the initial one. The process is

repeated until the two tables are the same.

