
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 90

SQL Injection Detection & Defeating Tools

Kartik Rai

Student (B.tech Vii
th

sem) Department of Computer science

Dronacharya College Of Engineering,Gurgaon-12350

Abstract - SQL injection is a form of attack that takes

advantage of applications that generate SQL queries

using user-supplied data without first checking or pre-

processing it to verify that it is valid. The objective is to

deceive the database system into running malicious code

that will reveal sensitive information or otherwise

compromise the server. By modifying the expected Web

application parameters, an attacker can submit SQL

queries and pass commands directly to the database.

Many webpages take input from users, such as search

terms, feedback comments or username and password,

and use them to build a SQL query which is passed to

the database. If these inputs are not validated, there is

nothing to stop an attacker inputting malicious code, for

example, that could instead instruct the database to

delete a specific table of client records. Getting the SQL

syntax right is not necessarily so simple and may

require a lot of trial and error, but by adding additional

conditions to the SQL statement and evaluating the

Web application's output, an attacker can eventually

determine whether, and to what extent, an application is

vulnerable to SQL injection. If the code achieves an

immediate result, it is an example of a first-order

attack. If the malicious input is stored in a database to

be retrieved and used later, such as providing input to a

dynamic SQL statement on a different page, it is

referred to as a second-order attack. Second-order

attacks can be very successful because once data is in a

database it is often deemed to be clean and so is not

revalidated prior to use.

Index Terms- introduction, SQL Injection Attacks,

URL filter, Web Application Vulnerability Scanner.

I. INTRODUCTION

According to OWASP, SQL injection vulnerabilities

were reported in 2008, making up 25% of all reported

vulnerabilities for web applications. An SQLIA

occurs when an attacker changes the intended effect

of an SQL query by inserting (or injecting) new SQL

keywords or operators into the query thereby gaining

unauthorized access to a database in order to view or

manipulate restricted data. The root cause of SQLIA

is insufficient user input validation. Although there is

an increasing awareness about security, there are

several significant factors that make securing web

applications difficult. First web applications are

growing at a frantic pace largely fuelled by the

simplicity with which one can develop such

applications using the numerous tools available.

Secondly the developers and administrators do not

have the requisite knowledge and experience in the

area of security. A logical approach to tackle the

problem of SQLIA is to scan the vulnerabilities

present in a webpage and subsequently launch attack

counter measure tools. There are a number of open-

source as well as commercial tools called Web

Application Vulnerability Scanners that perform

security testing as well as assessment and finally

report the vulnerabilities present. In spite of their

continuous evolution, these automated scanners still

have some problem with regard to the high number of

undetected vulnerabilities and high percentage of

false positives. A web access the security of web

applications.

II. SQL INJECTION ATTACKS

SQLIA is a hacking technique which the attacker

adds SQL statements through a web application's

input fields or hidden parameters to access to

resources. Lack of input validation in web

applications causes hacker to be successful. For the

following examples we will assume that a web

application receives a HTTP request from a client as

input and generates a SQL statement as output for the

back end database server. For example an

administrator will be authenticated after typing:

employee id=112 and password=admin. Figure1

describes a login by a malicious user exploiting SQL

Basically it is structured in three phases:

1. an attacker sends the malicious HTTP request to

the web application

2. creates the SQL statement

3. submits the SQL statement to the back end

database Example of a SQL Injection Attack

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 91

The above SQL statement is always true because of the Boolean tautology we appended (OR 1=1) so, we will access

to the web application as an administrator without knowing the right password.

III. URL FILTER

An SQL code gets injected if an attacker manages to

pass SQL Meta Characters (SQL expression) through

the user input fields to change the behavior of

predefined SQL queries. Thus if we can block the

SQL commands in the request send to the

Application Serverwe can prevent SQLIA. However,

while blocking SQL commands we must ensure that

legal queries and statements are not blocked. In this

paper we propose to thwart SQLIA by using an URL

filter . Every Request coming from the Client must

pass through the URL filter first before being

processed by the Application Server. If the request

contains any of the attack signatures mentioned in the

previous section it is denied access to the database.

Our URL filter is different from a validator that

blindly prohibits SQL meta characters in the input.

The proposed filter prohibits a SQL Meta character if

it occurs in combination with some other characters

such that the database can be abused. In server-side

architecture, a user invokes the services provided by

the application server using a browser. The input

provided by the user is usually sent to the application

server in the form of a parameter string. The

application server uses this input to generate a SQL

query to retrieve information from the database or

update it. Our proposed Meta filter is positioned

between the user and application server. The filter

intercepts the input from the user, parses it into SQL

Meta character tokens. If the input from the user

contains any attack signature then the injected input

is treated as an attack and an error page is displayed ,

otherwise the input is processed by the application

server normally.

 Server-side Architecture and its interaction with our

proposed Meta Filter , the SQL query and as such the

SQL Meta characters are generated by the application

server. Our proposed Meta filter checks for the

presence of SQL Meta characters before the input is

processed by the application server. Therefore, our

proposed solution will not block legal inputs.

Moreover, the attack patterns have been so designed

so that it is robust to SQL Meta characters that can

accidentally occurs in a legal input.

Comparison of Tools Based on Evaluation

Parameter:

The authors of proposed tools have evaluated their

tools in common parameters: efficiency,

effectiveness and performance, flexibility and

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 92

stability. The results of this classification are

summarized in Table 3. Definition of the measured

parameters:

 Efficiency

incorrectly categorizes a benign request being as a

malicious attack.

not recognized, so the tool lets it pass normally.

Effectiveness

etection: the percentage of real attacks,

correctly detected.

correctly blocked after being detected.

Flexibility

to detect/prevent different types of SQL Injection

attacks such as those were presented in section II.

Performance

detection of a SQLIA once the tool is running.

and block (prevent) a SQLIA once the tool is

running.

Stability

1. Web Applications: the possibility to test the

tool on different types of web applications,

such as open source/commercial,

large/small.

2. Databases: testing on web applications that

use different backend databases, such as

open source (e.g. MySQL) commercial (e.g.

Oracle).

3. Programming Languages: the ability of the

tool to work on web applications written in

different programming languages, such as

J2EE, .NET, PHP and so On.

4. Operating Systems: the ability of the tool to

run on different OS such as Windows and

Linux.

5. Application Servers: the possibility to run

the tool in a network using different type of

Application Server such Tomcat.

IV. CONCLUSION

The tool crawls through all the web pages of a web

application to discover vulnerable spots, performs a

controlled exploit of the vulnerabilities at these

vulnerable spots and finally verifies success of the

attack and reports the result. The performance of the

tool was measured by comparing it well-known SQLI

scanners. Results show that our proposed scanner is

able to cover more vulnerability in lesser time and

has fewer false positives. The security framework

proposed to defeat SQL Injection attack is based on

an URL Meta filter. We analyzed well-known SQL

Injection attacks and tried to identify a signature for

each such attack. The filter works by checking the

presence of these attack signatures in the userinput

before it is processed by the application server. The

proposed framework is generic and does not depend

on the application server as well as the underlying

database. The efficiency of the filter was tested by

using the CSR Scanner. In our future work we will

propose a framework for measuring effectiveness,

efficiency, stability and performance of tools in

common criteria to prove the strength and weakness

of them.

REFERENCES

[1] W. G. Halfond, J. Viegas and A. Orso, “A

Classification of SQL Injection Attacks and

Countermeasures,” College of Computing Georgia

Institute of Technology IEEE, 2006.

[2] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan,

CANDID: Preventing SQL Injection Attacks using

Dynamic Candidate Evaluation. Proceedings of the

14th ACM conference on Computer and

communications security. ACM, Alexandria,

Virginia, USA.page:12-24.

[3] Marco Cova, Davide Balzarotti. Swaddler: An

Approach for the Anomaly-based Detection of

State Violations in Web Applications. Recent

Advances in Intrusion Detection, Proceedings,

Volume: 4637 Pages: 63-86 Published: 2007.

[4] William G.J. Halfond, Jeremy Viegas and

Alessandro Orso, “A Classification of SQL Injection

Attacks and Countermeasures,” College of

Computing Georgia Institute of Technology IEEE,

2006.

[5] Z. Su and G. Wassermann. The Essence of

Command Injection Attacks in Web Applications.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142677 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 93

ACM SIGPLAN Notices. Volume: 41, pp: 372-382,

2006.

[6] Netsparker ofMavituna Security Ltd.:

http://www.mavitunasecurity.com/netsparker/visited

on January 2011

[7] Acunetix of Acunetix

Ltd.:http://www.acunetix.com visited on January

2011.

[8] WebCruiser of Janus Security.:http://sec4app.com

visited on January 2011.

[9] OWASP (Open Web Application Security

Project)

https://www.owasp.org/index.php/Category:OWASP

_Top_Ten_Project visited on January 2011.

