
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142688 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 115

C LANGUAGE AND ITS DIFFERENT TYPES OF

FUNCTIONS

Manish

Dronacharya College Of Engineering,

Maharishi Dayanand University, Gurgaon, Haryana, India

Abstract- C – Language History: The C programming

language is a structure oriented programming

language, developed at Bell Laboratories in 1972 by

Dennis Ritchie C programming language features

were derived from an earlier language called “B”

(Basic Combined Programming Language – BCPL) C

language was invented for implementing UNIX

operating system In 1978, Dennis Ritchie and Brian

Kernighan published the first edition “The C

Programming Language” and commonly known as

K&R C In 1983, the American National Standards

Institute (ANSI) established a committee to provide a

modern, comprehensive definition of C. The resulting

definition, the ANSI standard, or “ANSI C”, was

completed late 1988.

I. C PROGRAMMING LANGUAGE

STANDARDS

 C89/C90 standard – First standardized

specification for C language was developed by

the American National Standards Institute in

1989. C89 and C90 standards refer to the same

programming language.

 C99 standard – Next revision was published in

1999 that introduced new features like

advanced data types and other changes.

II. FEATURES OF C PROGRAMMING

LANGUAGE

 Reliability

 Portability

 Flexibility

 Interactivity

 Modularity

 Efficiency and Effectiveness

III. USES OF C PROGRAMMING LANGUAGE

The C programming language is used for

developing system applications that forms a major

portion of operating systems such as Windows,

UNIX and Linux. Below are some examples of C

being used.

 Database systems

 Graphics packages

 Word processors

 Spreadsheets

 Operating system development

 Compilers and Assemblers

 Network drivers

 Interpreters



C – Data Type

 C data types are defined as the data

storage format that a variable can store

a data to perform a specific operation.

 Data types are used to define a variable

before to use in a program.

 Size of variable, constant and array are

determined by data types.

IV. C – DATA TYPES

There are four data types in C language. They are,

1. Basic data types in C:

1.1. Integer data type:

 Integer data type allows a variable to store

numeric values.

 “int” keyword is used to refer integer data

type.

 The storage size of int data type is 2 or 4

or 8 byte.

 It varies depend upon the processor in the

CPU that we use. If we are using 16 bit

processor, 2 byte (16 bit) of memory will

be allocated for int data type.

 Like wise, 4 byte (32 bit) of memory for

32 bit processor and 8 byte (64 bit) of

memory for 64 bit processor is allocated

for int datatype.

 int (2 byte) can store values from -32,768

to +32,767

 int (4 byte) can store values from -

2,147,483,648 to +2,147,483,647.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142688 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 116

 If you want to use the integer value that

crosses the above limit, you can go for

“long int” and “long long int” for which

the limits are very high.

Note:

 We can’t store decimal values using int

data type.

 If we use int data type to store decimal

values, decimal values will be truncated

and we will get only whole number.

 In this case, float data type can be used to

store decimal values in a variable.

1.2. Character data type:

 Character data type allows a variable to

store only one character.

 Storage size of character data type is 1.

We can store only one character using

character data type.

 “char” keyword is used to refer

character data type.

 For example, ‘A’ can be stored using char

datatype. You can’t store more than one

character using char data type.

 Please refer C – Strings topic to know how

to store more than one characters in a

variable.

1.3. Floating point data type:

Floating point data type consists of 2 types. They

are,

1. float

2. double

1. float:

 Float data type allows a variable to store

decimal values.

 Storage size of float data type is 4. This

also varies depend upon the processor in

the CPU as “int” data type.

 We can use up-to 6 digits after decimal

using float data type.

 For example, 10.456789 can be stored in a

variable using float data type.

2. double:

 Double data type is also same as float data

type which allows up-to 10 digits after

decimal.

 The range for double datatype is from 1E–

37 to 1E+37.

1.3.2. Modifiers in C:

 The amount of memory space to be

allocated for a variable is derived by

modifiers.

 Modifiers are prefixed with basic data

types to modify (either increase or

decrease) the amount of storage space

allocated to a variable.

 For example, storage space for int data

type is 4 byte for 32 bit processor. We can

increase the range by using long int which

is 8 byte. We can decrease the range by

using short int which is 2 byte.

 There are 5 modifiers available in C

language. They are,

1. short

2. long

3. signed

4. unsigned

5. long long

2. Enumeration data type in C:

 Enumeration data type consists of named

integer constants as a list.

 It start with 0 (zero) by default and value

is incremented by 1 for the sequential

identifiers in the list.

 Enum syntax in C:

 enum identifier [optional{

enumerator-list }];

 Enum example in C:

 enum month { Jan, Feb, Mar }; or

 /* Jan, Feb and Mar variables will be

assigned to 0, 1 and 2 respectively by default */

enum month { Jan = 1, Feb, Mar };

/* Feb and Mar variables will be assigned to 2 and

3 respectively by default */

enum month { Jan = 20, Feb, Mar };

/* Jan is assigned to 20. Feb and Mar variables will

be assigned to 21 and 22 respectively by default */

 The above enum functionality can also be

implemented by “#define” preprocessor

directive as given below. Above enum

example is same as given below.

#define Jan 20;

#define Feb 21;

#define Mar 22;



3. Derived data type in C:

 Array, pointer, structure and union are

called derived data type in C language.

 To know more about derived data

types, please visit “C – Array“ , “C –

Pointer” , “C – Structure” and “C –

Union” topics in this tutorial.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142688 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 117

4. Void data type in C:

 Void is an empty data type that has no

value.

 This can be used in functions and pointers.

 Please visit “C – Function” topic to know

how to use void data type in function with

simple call by value and call by reference

example programs.

V. C – FUNCTION

 C functions are basic building blocks in a

program. All C programs are written using

functions to improve re-usability, understandability

and to keep track on them. You can learn below

concepts of C functions in this section in detail.

1. What is C function?

2. Uses of C functions

3. C function declaration, function call and

definition with example program

4. How to call C functions in a program?

1. Call by value

2. Call by reference

5. C function arguments and return values

1. C function with arguments and

with return value

2. C function with arguments and

without return value

3. C function without arguments

and without return value

4. C function without arguments

and with return value

6. Types of C functions

1. Library functions in C

2. User defined functions in C

1.Creating/Adding user defined function in C

library

7. Command line arguments in C

8. Variable length arguments in C

1. What is C function?

 A large C program is divided into basic building

blocks called C function. C function contains set of

instructions enclosed by “{ }” which performs

specific operation in a C program. Actually,

Collection of these functions creates a C program.

2. Uses of C functions:

 C functions are used to avoid rewriting

same logic/code again and again in a

program.

 There is no limit in calling C functions to

make use of same functionality wherever

required.

 We can call functions any number of times

in a program and from any place in a

program.

 A large C program can easily be tracked

when it is divided into functions.

 The core concept of C functions are, re-

usability, dividing a big task into small

pieces to achieve the functionality and to

improve understandability of very large C

programs.

3. C function declaration, function call and

function definition:

There are 3 aspects in each C function. They are,

 Function declaration or prototype -

This informs compiler about the function

name, function parameters and return

value’s data type.

 Function call – This calls the actual

function

 Function definition – This contains all the

statements to be executed.

* example program for C function:

 As you know, functions should be

declared and defined before calling in a C

program.

 In the below program, function “square” is

called from main function.

 The value of “m” is passed as argument to

the function “square”. This value is

multiplied by itself in this function and

multiplied value “p” is returned to main

function from function “square”.

#include<stdio.h>

// function prototype, also called function

declaration

float square (float x);

// main function, program starts from here

int main()

{

 float m, n ;

 printf ("\nEnter some number for finding

square \n");

 scanf ("%f", &m) ;

 // function call

 n = square (m) ;

 printf ("\nSquare of the given number %f is

%f",m,n);

}

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142688 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 118

float square (float x) // function definition

{

 float p ;

 p = x * x ;

 return (p) ;

}

Output:

Enter some number for finding square

2

Square of the given number 2.000000 is 4.000000

4. How to call C functions in a program?

There are two ways that a C function can be called

from a program. They are,

1. Call by value

2. Call by reference

1. Call by value:

 In call by value method, the value of the

variable is passed to the function as

parameter.

 The value of the actual parameter can not

be modified by formal parameter.

 Different Memory is allocated for both

actual and formal parameters. Because,

value of actual parameter is copied to

formal parameter.

Note:

 Actual parameter – This is the argument

which is used in function call.

 Formal parameter – This is the argument

which is used in function definition

Example program for C function (using call by

value):

 In this program, the values of the variables

“m” and “n” are passed to the function

“swap”.

 These values are copied to formal

parameters “a” and “b” in swap function

and used.

#include<stdio.h>

// function prototype, also called function

declaration

void swap(int a, int b);

int main()

{

 int m = 22, n = 44;

 // calling swap function by value

 printf(" values before swap m = %d \nand n =

%d", m, n);

 swap(m, n);

}

void swap(int a, int b)

{

 int tmp;

 tmp = a;

 a = b;

 b = tmp;

 printf(" \nvalues after swap m = %d\n and n =

%d", a, b);

}

Output:

values before swap m = 22

and n = 44

values after swap m = 44

and n = 22

2. Call by reference:

 In call by reference method, the address of

the variable is passed to the function as

parameter.

 The value of the actual parameter can be

modified by formal parameter.

 Same memory is used for both actual and

formal parameters since only address is

used by both parameters.

Example program for C function (using call by

reference):

 In this program, the address of the

variables “m” and “n” are passed to the

function “swap”.

 These values are not copied to formal

parameters “a” and “b” in swap function.

 Because, they are just holding the address

of those variables.

 This address is used to access and change

the values of the variables.

#include<stdio.h>

// function prototype, also called function

declaration

void swap(int *a, int *b);

int main()

{

 int m = 22, n = 44;

 // calling swap function by reference

 printf("values before swap m = %d \n and n =

%d",m,n);

 swap(&m, &n);

}

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142688 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 119

void swap(int *a, int *b)

{

 int tmp;

 tmp = *a;

 *a = *b;

 *b = tmp;

 printf("\n values after swap a = %d \nand b =

%d", *a, *b);

}

Output:

values before swap m = 22

and n = 44

values after swap a = 44

and b = 22

REFRENCES

[1] ANSI 89 – American National Standards

Institute, American National Standard for

Information Systems Programming Language

C, 1989.

[2] Kernighan 78 – B. W. Kernighan and D. M.

Ritchie, The C Programming Language,

Prentice-Hall: Englewood Cliffs, NJ, 1978.

Second edition, 1988.

[3] Thinking 90 – C* Programming Guide,

Thinking Machines Corp. Cambridge Mass.,

1990.

