
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142706 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 355

CONSTRUCTOR (OBJECT ORIENTED
PROGRAMMING)

Nishant malik

Abstract

In class-based object-oriented programming, a
constructor (abbreviation: ctor) in a class is a
special type of subroutine called to create an object.
It prepares the new object for use, often accepting
arguments that the constructor uses to set required
member variables.
A constructor resembles an instance method, but it
differs from a method in that it has no explicit return
type, it is not implicitly inherited and it usually has
different rules for scope modifiers. Constructors
often have the same name as the declaring class.
They have the task of initializing the object's data
members and of establishing the invariant of the
class, failing if the invariant is invalid. A properly
written constructor leaves the resulting object in a
valid state. Immutable objects must be initialized in
a constructor.

1. Types
(a) Parameterized constructors

Constructors that can take arguments are termed as
parameterized constructors. The number of
arguments can be greater or equal to one(1). For
example:
class Example
{

int x, y;
public:

Example();
Example(int a, int b); // Parameterized

constructor
};
Example :: Example()
{
}
Example :: Example(int a, int b)
{

x = a;
y = b;
}

When an object is declared in a parameterized
constructor, the initial values have to be passed as
arguments to the constructor function. The normal
way of object declaration may not work. The

constructors can be called explicitly or implicitly.
The method of calling the constructor implicitly is
also called the shorthand method.

(b) Default constructors
If the programmer does not supply a constructor for
an instantiable class, most languages will provide a
default constructor.
The behavior of the default constructor is language
dependent. It may initialize data members to zero or
other same values, or it may do nothing at all.
Example:
#include <iostream>

struct not_default_constructible {
not_default_constructible() = delete; //

delete default constructor
not_default_constructible(int x) { std::cout

<< "Constructed with " << x << '\n'; }
};

int main() {
not_default_constructible static_array[] =

{ 1, 2, 3 };
not_default_constructible *dynamic_array

=
new

not_default_constructible[3]{ 4, 5, 6 }; // C++11
}

(c) Copy constructor
Copy constructors define the actions performed by
the compiler when copying class objects. A copy
constructor has one formal parameter that is the type
of the class (the parameter may be a reference to an
object). It is used to create a copy of an existing
object of the same class. Even though both classes
are the same, it counts as a conversion constructor.
While copy constructors are usually abbreviated
copy ctor or cctor, they have nothing to do with class
constructors used in .NET using the same
abbreviation.

2. Syntax

(a) Java, C++, C#, ActionScript, and PHP 4 have a
naming convention in which constructors have the
same name as the class of which they are associated
with.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142706 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 356

(b) In Objective-C, the constructor method is split
across two methods, "alloc" and "init" with the
alloc method setting aside (allocating) memory for
an instance of the class, and the init method
handling the bulk of initializing the instance. A call
to the method "new" invokes both the alloc and the
init methods, for the class instance.

3. Language details
(a) Java

In Java, constructors differ from other methods in
that:

 Constructors never have an explicit return
type.

 Constructors cannot be directly invoked (the
keyword “new” invokes them).

 Constructors cannot be synchronized, final,
abstract, native, or static.

(b) C++

In C++, the name of the constructor is the name of
the class. It returns nothing. It can have parameters
like any member function. Constructor functions are
usually declared in the public section, but can also
be declared in the protected and private sections, if
the user wants to restrict access to them.
The constructor has two parts. First is the initializer
list which follows the parameter list and before the
method body. It starts with a colon and entries are
comma-separated. The initializer list is not required,
but offers the opportunity to provide values for data
members and avoid separate assignment statements.

4. Reference
https://en.wikipedia.org/wiki/Constructor_(object-
oriented_programming)

