
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142712 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 322

STACK AND QUEUE
Pankaj Gaur

Department Of Computer Science and Engineering,
Dronacharya College of Engineering, Gurgaon

ABSTRACT:- An array is a random access data
structure, where each element can be accessed
directly and in constant time. A typical
illustration of random access is a book - each
page of the book can be open independently of
others. Random access is critical to many
algorithms, for example binary search.
A linked list is a sequential access data structure,
where each element can be accessed only in
particular order. A typical illustration of
sequential access is a roll of paper or tape - all
prior material must be unrolled in order to get to
data you want. In this note we consider a subcase
of sequential data structures, so-called limited
access data structures.

Stacks

INTRODUCTION-
A stack is a container of objects that are inserted and
removed according to the last-in first-out (LIFO)
principle. In the pushdown stacks only two
operations are allowed: push the item into the stack,
and pop the item out of the stack. A stack is a limited
access data structure - elements can be added and
removed from the stack only at the top. push adds an
item to the top of the stack, pop removes the item
from the top. A helpful analogy is to think of a stack
of books; you can remove only the top book, also
you can add a new book on the top.
A stack is a recursive data structure. Here is a
structural definition of a Stack:
a stack is either empty or
it consistes of a top and the rest which is a stack;

Applications
The simplest application of a stack is to reverse a
word. You push a given word to stack - letter by
letter - and then pop letters from the stack.
Another application is an "undo" mechanism in text
editors; this operation is accomplished by keeping
all text changes in a stack.

Backtracking. This is a process when you
need to access the most recent data element in a
series of elements. Think of a labyrinth or maze -
how do you find a way from an entrance to an exit?

Once you reach a dead end, you must backtrack. But
backtrack to where? to the previous choice point.
Therefore, at each choice point you store on a stack
all possible choices. Then backtracking simply
means popping a next choice from the stack.

Language processing:
space for parameters and local variables is created
internally using a stack.
compiler's syntax check for matching braces is
implemented by using stack.
support for recursion
Implementation
In the standard library of classes, the data type stack
is an adapter class, meaning that a stack is built on
top of other data structures. The underlying structure
for a stack could be an array, a vector, an ArrayList,
a linked list, or any other collection. Regardless of
the type of the underlying data structure, a Stack
must implement the same functionality. This is
achieved by providing a unique interface:
public interface StackInterface<AnyType>
{

public void push(AnyType e);

public AnyType pop();

public AnyType peek();

public boolean isEmpty();
}
The following picture demonstrates the idea of
implementation by composition.

Another implementation requirement (in addition to
the above interface) is that all stack operations must
run in constant time O(1). Constant time means that
there is some constant k such that an operation takes
k nanoseconds of computational time regardless of
the stack size.
Array-based implementation

In an array-based implementation we
maintain the following fields: an array A of a default

size (≥ 1), the variable top that refers to the top

element in the stack and the capacity that refers to
the array size. The variable top changes from -1 to

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142712 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 323

capacity - 1. We say that a stack is empty when top
= -1, and the stack is full when top = capacity-1.
In a fixed-size stack abstraction, the capacity stays
unchanged, therefore when top reaches capacity, the
stack object throws an exception. See
ArrayStack.java for a complete implementation of
the stack class.

In a dynamic stack abstraction when top reaches
capacity, we double up the stack size.

Linked List-based implementation
Linked List-based implementation provides the best
(from the efficiency point of view) dynamic stack
implementation.
See ListStack.java for a complete implementation of
the stack class.
Queues
A queue is a container of objects (a linear collection)
that are inserted and removed according to the first-
in first-out (FIFO) principle. An excellent example
of a queue is a line of students in the food court of
the UC. New additions to a line made to the back of
the queue, while removal (or serving) happens in the
front. In the queue only two operations are allowed
enqueue and dequeue. Enqueue means to insert an
item into the back of the queue, dequeue means
removing the front item. The picture demonstrates
the FIFO access.
The difference between stacks and queues is in
removing. In a stack we remove the item the most
recently added; in a queue, we remove the item the
least recently added.

Implementation
In the standard library of classes, the data type queue
is an adapter class, meaning that a queue is built on
top of other data structures. The underlying structure
for a queue could be an array, a Vector, an ArrayList,
a LinkedList, or any other collection. Regardless of
the type of the underlying data structure, a queue
must implement the same functionality. This is
achieved by providing a unique interface.

interface QueueInterface‹AnyType>

{
public boolean isEmpty();

public AnyType getFront();

public AnyType dequeue();

public void enqueue(AnyType e);

public void clear();
}
Each of the above basic operations must run at
constant time O(1). The following picture
demonstrates the idea of implementation by
composition.

Circular Queue
Given an array A of a default size (≥ 1) with two

references back and front, originally set to -1 and 0
respectively. Each time we insert (enqueue) a new
item, we increase the back index; when we remove
(dequeue) an item - we increase the front index. Here
is a picture that illustrates the model after a few
steps:

As you see from the picture, the queue logically
moves in the array from left to right. After several
moves back reaches the end, leaving no space for
adding new elements

However, there is a free space before the front index.
We shall use that space for enqueueing new items,
i.e. the next entry will be stored at index 0, then 1,
until front. Such a model is called a wrap around
queue or a circular queue

Finally, when back reaches front, the queue is full.
There are two choices to handle a full queue:a) throw
an exception; b) double the array size.
The circular queue implementation is done by using
the modulo operator (denoted %), which is
computed by taking the remainder of division (for
example, 8%5 is 3). By using the modulo operator,
we can view the queue as a circular array, where the
"wrapped around" can be simulated as "back %
array_size". In addition to the back and front
indexes, we maintain another index: cur - for
counting the number of elements in a queue. Having
this index simplifies a logic of implementation.
See ArrayQueue.java for a complete implementation
of a circular queue.
Applications
The simplest two search techniques are known as
Depth-First Search(DFS) and Breadth-First Search
(BFS). These two searches are described by looking
at how the search tree (representing all the possible
paths from the start) will be traversed.
Deapth-First Search with a Stack

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142712 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 324

In depth-first search we go down a path until we get
to a dead end; then we backtrack or back up (by
popping a stack) to get an alternative path.
Create a stack
Create a new choice point
Push the choice point onto the stack
while (not found and stack is not empty)
Pop the stack
Find all possible choices after the last one tried
Push these choices onto the stack
Return
Breadth-First Search with a Queue
In breadth-first search we explore all the nearest
possibilities by finding all possible successors and
enqueue them to a queue.
Create a queue
Create a new choice point
Enqueue the choice point onto the queue
while (not found and queue is not empty)
Dequeue the queue
Find all possible choices after the last one tried
Enqueue these choices onto the queue
Return
We will see more on search techniques later in the
course.
Arithmetic Expression Evaluation
An important application of stacks is in parsing. For
example, a compiler must parse arithmetic
expressions written using infix notation:
1 + ((2 + 3) * 4 + 5)*6
We break the problem of parsing infix expressions
into two stages. First, we convert from infix to a
different representation called postfix. Then we
parse the postfix expression, which is a somewhat
easier problem than directly parsing infix.
Converting from Infix to Postfix. Typically, we deal
with expressions in infix notation
2 + 5
where the operators (e.g. +, *) are written between
the operands (e.q, 2 and 5). Writing the operators
after the operands gives a postfix expression 2 and 5
are called operands, and the '+' is operator. The
above arithmetic expression is called infix, since the
operator is in between operands. The expression
2 5 +
Writing the operators before the operands gives a
prefix expression
+2 5
Suppose you want to compute the cost of your
shopping trip. To do so, you add a list of numbers
and multiply them by the local sales tax (7.25%):
70 + 150 * 1.0725

Depending on the calculator, the answer would be
either 235.95 or 230.875. To avoid this confusion we
shall use a postfix notation
70 150 + 1.0725 *
Postfix has the nice property that parentheses are
unnecessary.
Now, we describe how to convert from infix to
postfix.
Read in the tokens one at a time
If a token is an integer, write it into the output
If a token is an operator, push it to the stack, if the
stack is empty. If the stack is not empty, you pop
entries with higher or equal priority and only then
you push that token to the stack.
If a token is a left parentheses '(', push it to the stack
If a token is a right parentheses ')', you pop entries
until you meet '('.
When you finish reading the string, you pop up all
tokens which are left there.
Arithmetic precedence is in increasing order: '+', '-',
'*', '/';
Example. Suppose we have an infix
expression:2+(4+3*2+1)/3. We read the string by
characters.
'2' - send to the output.
'+' - push on the stack.
'(' - push on the stack.
'4' - send to the output.
'+' - push on the stack.
'3' - send to the output.
'*' - push on the stack.
'2' - send to the output.
Evaluating a Postfix Expression. We describe how
to parse and evaluate a postfix expression.
We read the tokens in one at a time.
If it is an integer, push it on the stack
If it is a binary operator, pop the top two elements
from the stack, apply the operator, and push the
result back on the stack.
Consider the following postfix expression
5 9 3 + 4 2 * * 7 + *
Here is a chain of operations
Stack Operations Output

push(5); 5
push(9); 5 9
push(3); 5 9 3
push(pop() + pop()) 5 12
push(4); 5 12 4
push(2); 5 12 4 2
push(pop() * pop()) 5 12 8
push(pop() * pop()) 5 96

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142712 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 325

push(7) 5 96 7
push(pop() + pop()) 5 103
push(pop() * pop()) 515
Note, that division is not a commutative operation,
so 2/3 is not the same as 3/2.

References:
Let us c- yashvant p.kanetkar

