
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142753 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 265

BUBBLE SORT
Priyanka kunjwal

Dronacharya College of Engineering
Haryana

ABSTRACT:-Sorting algorithms provide a way
to arrange a series of numbers or letters in some
predefined order based on some measurable
quantity in the numbers or letters. Thus we may
arrange a series of numbers according to their
values in an increasing order or we may arrange
the letters according to decreasing order of their
ASCII values using sorting. In this paper we will
describe a simple and easy to implement sorting
algorithm called Bubble Sort.

INTRODUCTION

Given a list of n numbers or letters the objective of
any sorting algorithm is to arrange the same in a
particular order where the ordering is done based on
some intrinsic property of the inputs. The simplest
way to sort a list of input values is to compare them
pairwise and obtain the proper ordering. Sorting
algorithms that achieve their goal by comparison are
called comparison based sorting algorithm. Bubble
Sort is a simple and easy to implement comparison
based sorting algorithm. We will describe the
algorithm by sorting a list of n numbers in increasing
order of magnitude. The same process can be
followed to sort a list of letters according to some
criteria. The input to the algorithm will be a list of n
numbers in a random order and the output will be a
list of the same n numbers arranged in an increasing
order of magnitude.

PERFORMANCE

Bubble sort has worst-case and average complexity
both О (n2), where n is the number of items being
sorted. There exist many sorting algorithms with
substantially better worst-case or average
complexity of O (n log n). Even other О (n2) sorting
algorithms, such as insertion sort, tend to have better
performance than bubble sort. Therefore, bubble sort
is not a practical sorting algorithm when n is large.

The only significant advantage that bubble sort has
over most other implementations, even quicksort,
but not insertion sort, is that the ability to detect that
the list is sorted is efficiently built into the algorithm.

When the list is already sorted (best-case), the
complexity of bubble sort is only O (n). By contrast,
most other algorithms, even those with better
average-case complexity, perform their entire
sorting process on the set and thus are more
complex. However, not only does insertion sort have
this mechanism too, but it also performs better on a
list that is substantially sorted (having a small
number of inversions).

Bubble sort should be avoided in the case of large
collections. It will not be efficient in the case of a
reverse-ordered collection

STEP BY STEP EXAMPLE

Let us take the array of numbers "5 1 4 2 8", and sort
the array from lowest number to greatest number
using bubble sort. In each step, elements written in
bold are being compared. Three passes will be
required.

First Pass

(5 1 4 2 8) (1 5 4 2 8), Here, algorithm compares
the first two elements, and swaps since 5 > 1.

(1 5 4 2 8) (1 4 5 2 8), Swap since 5 > 4 (1 4 5
2 8) (1 4 2 5 8), Swap since 5 > 2 (1 4 2 5 8)

(1 4 2 5 8),

Now, since these elements are already in order (8 >
5), algorithm does not swap them.

Second Pass

(1 4 2 5 8) (1 4 2 5 8)

(1 4 2 5 8) (1 2 4 5 8), Swap since 4 > 2 (1 2 4
5 8) (1 2 4 5 8)

(1 2 4 5 8) (1 2 4 5 8)

Now, the array is already sorted, but the algorithm
does not know if it is completed. The algorithm
needs one whole pass without any swap to know it
is sorted.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142753 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 266

Third Pass

(1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8)

IMPLEMENTATION

PSEUDOCODE IMPLEMENTATION:

The bubble sort algorithm can be easily optimized
by observing that the n-th pass finds the n-th largest
element and puts it into its final place. So, the inner
loop can avoid looking at the last n-1 items when
running for the n-th time:

procedure bubble Sort(A : list of sortable items) n
= length(A)

repeat
swapped = false

for i = 1 to n-1 inclusive do if A[i-1] > A[i] then
swap(A[i-1], A[i])

swapped = true end if

end for n = n - 1

until not swapped end procedure

More generally, it can happen that more than one
element is placed in their final position on a single
pass. In particular, after every pass, all elements
after the last swap are sorted, and do not need to be
checked again. This allows us to skip over a lot of
the elements, resulting in about a worst case 50%
improvement in comparison count (though no
improvement in swap counts), and adds very little
complexity because the new code subsumes the
"swapped" variable.

To accomplish this in pseudocode we write the
following:

procedure bubbleSort(A : list of sortable items) n =
length(A)
repeat

new n = 0

for i = 1 to n-1 inclusive do if A[i-1] > A[i] then
swap(A[i-1], A[i])

new n = i

end if end for n = newn

until n = 0 end procedure

BUBBLE SORT EXAMPLE

/* Bubble sort code */

#include <stdio.h>

int main()

{

int array[100], n, c, d, swap;

printf("Enter number of elements\n"); scanf("%d",
&n);

printf("Enter %d integers\n", n);

for (c = 0; c < n; c++) scanf("%d", &array[c]);

for (c = 0 ; c < (n - 1); c++)

{
for (d = 0 ; d < n - c - 1; d++)
{

if (array[d] > array[d+1]) /* For decreasing order
use < */

{
swap = array[d];
array[d] = array[d+1];

array[d+1] = swap;
}
}
}

printf("Sorted list in ascending order:\n");

for (c = 0 ; c < n ; c++) printf("%d\n", array[c]);

return 0;
}

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142753 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 267

OUTPUT :

REFRENCES:

[1] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second
Edition. MIT Press and McGraw-Hill,
2001. ISBN 0-262-03293-7. Problem 2-2,
pg.40.

[2] Sorting in the Presence of Branch
Prediction and Caches

[3] 3. Fundamentals of Data Structures by Ellis
Horowitz, Sartaj Sahni and Susan
Anderson-Freed ISBN 81-7371-605-6

