
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142805 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 182

Cluster based distributed mutual exclusion

algorithm for mobile Ad hoc Network

Prof .Dudhagi Rupali R., Prof. Valsang Aarti B., Prof. Khureshi M. A.

Department of Computer Science and Engg.

A.G Patil institute of technology, Solapur, India

Abstract- A mobile ad hoc network is a network wherein

a pair of nodes communicates by sending messages either

over a direct wireless link, or over a sequence of wireless

links including one or more intermediate nodes. In this

paper, the proposed algorithm is suitable for large

distributed application. It is combination of permission

based and token based broadcast algorithm and a

network having N number of nodes is splitted into M

groups termed as clusters. This algorithm requires nodes

to communicate with only their current neighbors in the

cluster, making it well-suited to the ad hoc environment.

The mutual exclusion problem involves a group of

processes, each of which intermittently requires access to

a resource or a piece of code called the critical section

(CS). At most one process may be in the CS at any given

time. With this algorithm synchronization delay and

starvation problem is reduced to minimal.

Index Terms- Mutual exclusion, distributed system and

ad hoc networks

I. INTRODUCTION

 A mobile ad-hoc network (MANET is a self-

configuring infrastructure less network of mobile

nodes connected by wireless links. Each node in a

MANET is free to move independently in any

direction, and will therefore change its links to other

nodes frequently. The mutual exclusion problem

involves a group of processes, each of which

intermittently requires access to a resource or a piece

of code called the critical section (CS). At most one

process may be in the CS at any given time.

 According to the algorithmic principle, the mutual

exclusion algorithms for distributed systems can

broadly be classified into two categories. Permission

based algorithms and. token based algorithms.

 In permission based algorithm, a process can enter

in the critical section only after receiving permission

from other process (es) in the system. In token based

algorithm, a unique token is shared among all nodes.

A node is allowed to enter CS if it possesses the token.

Token based algorithms use sequence number with

every request for token.

II. LITERATURE SURVEY:

In the Lamport’s algorithm, a node which needs to

enter CS should broadcast its CS request, wait for

acknowledge from all nodes, and finally enter the CS.

After exiting CS, the node should broadcast a release

message indicating release of CS. This algorithm

sends 3(−1) messages for each CS [1].In order to

reduce message complexity, Ricart Agrawala has

made improvements to Lamport’s algorithm which

sends only 2(− 1) messages per each CS [2]. Ricart

Agrawala achieved this by removing release message

step of Lamport’s algorithm. Instead, the node exiting

the CS only sends release message to the nodes which

have sent request messages and wait for permission. A

queue for holding requests that come from other nodes

is also added to the algorithm. Agrawal and El Abbadi

[7] and Maekawa [6] have proposed quorrum-based

algorithms which dramatically reduce the message

complexity and belong to permission-based approach

[7, 6]. Agrawal and El Abbadi use tree-structured

quorums which require permission from only O (log2

()) nodes in best case, and O() in the worst case.

Maekawa proposed a new DMX algorithm which only

uses 2 √ messages to create a mutual exclusion in a

computer network. The network consists of number of

subsets whose intersection set is not empty.

Additionally, there are also a number of algorithms

which use token-based DMX approach [3, 4]. Main

idea of token-based algorithms is that the node having

the token will have opportunity to enter CS. One of

the most popular approaches is Suzuki-Kasami’s

algorithm [3] which uses messages per each CS.

Another one is Raymond’s tree based algorithm [4]

which reduces the message complexity using its

dynamic tree structure.

Distributed mutual exclusion algorithms that rely on

the maintenance of a logical structure to provide order

and efficiency may be inefficient when run in a mobile

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142805 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 183

environment, where the topology can potentially

change with every node movement.

Utilizing the clustered structure of the network, the

proposed algorithm significantly reduces the message

requirement per mutual exclusion entry. Therefore,

overall energy requirement for message

communication of the system is optimized.

III. BACKGROUND

A. Backbone formation in MANET

The backbone in wireless ad hoc networks is a path

connecting cluster heads that supports a network-wide

infrastructure for routing and inter cluster operations.

There are energy-efficient [9] , multicast oriented[10] ,

tree based[11] and dominating set based backbones

which are proposed for MANETs in literature.

B. Clustering in MANET

Clustering is a fundamental approach to manage the

MANET services. In clustered networks, nodes are

either classified as cluster members, cluster heads or

optionally cluster gateways. A cluster member is an

ordinary cluster node which sends its request to its

cluster head. A cluster head is responsible for

managing intra cluster requests and participating in

inter cluster operations. The most significant benefit

of clustering is that the network load is distributed

more balanced in clustered networks compared to the

networks with no infrastructure. Lastly, the clustering

method supports a hierarchical management scheme

which upper layers can take advantage of it

C. Performance Metrics

Performance of a distributed mutual exclusion

algorithm depends on whether the system is lightly or

heavily loaded. If no other process is in the CS when a

process makes a request to enter it, the system is

lightly loaded. Otherwise, when there is a high

demand for the CS which results in queueing up of the

requests, the system is said to be heavily loaded. The

important metrics to evaluate the performance of a

mutual exclusion algorithm are the number of

messages per request, response time and the

synchronization delay as described below:

• Number of Messages per Request (M): The total

number of messages required to enter CS is an

important and useful parameter to determine the

required network bandwidth for that particular

algorithm. • Response Time(R): The Response Time R

is measured as the interval between the request of a

node to enter a CS and the time it finishes executing

the CS.

• Synchronization Delay(S): The synchronization

delay S is the time required for a node to enter a CS

after another node finishes executing it. The minimum

value of S is one message transfer time T since one

message success to transfer the access rights to

another node.

IV. PROPOSED ALGORITHM

This algorithm combines Suzuki kasami’s algorithm

and Ricart agrawala algorithm. For a large distributed

application involve n number of nodes, using either of

two algorithm leads to increase in synchronization

delay and number of messages per request. So to

minimize these, in this algorithm the nodes are

grouped in clusters and each cluster has a cluster

leader. Suzuki-Kasami’s algorithm is used inside

clusters and Ricart-Agrawala algorithm is used to get

permission among the cluster leaders.

A. System model and Data structures

In Ricarta-agrawala-suzuki’s algorithm, we have two

types of nodes, namely, ordinary and cluster leader.

Ordinary nodes only have information about their own

neighbors and use Suzuki-Kasami’s algorithm to enter

the CS. These nodes broadcast a CS request to nodes

in its respective cluster. Leader nodes are dedicated to

get permission from other clusters. The leader nodes

can process two threads in order to act as leader and

ordinary nodes simultaneously. Their job is to send

external request message when their cluster needs to

enter CS and give the permission when other clusters

need to enter CS.

Data structures used in algorithm 1 and 2

Send_msg – requesting broadcast the message to all

the nodes in its cluster.

 Get_token - Requesting node sends the message to

leader node to get the permission from the other

clusters.

ExReq-Cluster leader broadcast request message to

other cluster leader for getting permission.

req[j] – denotes the array of integer for the sequence

number of the latest request message maintained at

node j, which is used for requesting to get the token

from the other nodes.

last[j] – denotes the sequence number of the latest

visit to CS for process j.

state – denotes the state of the critical section

T – denotes the unique timestamp generated by the

node for request message.

Pi – denotes the node of different cluster.

Pl & pi – denotes the leader nodes.

Algorithm 1 [Intracluster]

{Program of process j}

Initially, ∀i: req[i] = last[i] =0; timeout = 60;

* Entry protocol *

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142805 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 184

state :=WANTED;

req[j] := req[j] + 1;

Send_msg (j, req[j]) to all;

Wait until token (Q, last) arrives && timeout = = 0;

 If timeout <= 0 then

 Get_ token message to leader node;

state:= HELD;

Critical Section

* Exit protocol *

last[j] := req[j]

∀k ≠ j: k is in Q ⋀ req[k] = last[k] + 1  append k to

Q;

if Q is not empty  send (tail-of-Q, last) to head-of-

Q;

state:= RELEASED;

Upon receiving a request (k, num)

req[k] := max(req[k], num)

When there is an internal Suzuki-Kasami’s algorithm

request, InReq, inside the cluster then Entry protocol

of algorithm1 is invoked. In absence of token within

the cluster, respective node sends Get_token message

to the cluster leader.

Algorithm 2 [Intercluster]

* Entry protocol *

state := RELEASED;

To enter the section

state := WANTED;

Broadcast request to all processes; processing deferred

here

T := request’s timestamp;

Wait until (number of replies received = (N – 1));

state := HELD;

generates the token and sends to requested pj

* Exit protocol *

state := RELEASED;

reply to any queued requests;

Upon receiving a request <Ti, pi> at pl (i ≤ l)

if (state = HELD or (state = WANTED and (T, pl) <

(Ti, pi))) then

queue request from pi without replying;

else

reply immediately to pi;

end if

In fig 1, n1 node is executing in CS,n2 and n3 wants

to enter CS so sends Get_Token message to its

respective cluster leader. Then cluster leaders

broadcasts request message with timestamp.

When the cluster leader having token receives the

external request, ExReq, it sends an ordinary Suzuki-

Kasami’s request to its cluster for token ,once it

receives the token, keeps it with itself and sends reply

or gives permission to the requester. Cluster leaders

add a level of indirection and obtain the illusion that

there are only cluster leaders which are implementing

Ring algorithm.

V. ANALYSIS OF THE PROPOSED

ALGORITHM

In this section, we present the theoretical analysis of

Ricart-agrawala-suzuki’s algorithm along with

relevant proofs. This theoretical analysis contains

correctness, energy consumption, synchronization

delay, and response time for the proposed algorithm

.

A. Correctness of Ricart-agrawala-suzuki’s Algorithm.

The correctness of Ricart-agrawala-suzuki’s algorithm

is examined according to safety and liveness attributes

of the algorithm.

1) Safety. Safety of Ricart-agrawala-suzuki’s

algorithm is analyzed from the single token existence

and mutual exclusion points of view, which will be

discussed in Theorem 3.

Lemma1. In Ricart-agrawala-suzuki’s algorithm at

most one token exists in the cluster.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142805 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 185

Proof. Assume the contrary. In this case, there exists

more than one token in the network concurrently.

Assume that the nodes having tokens are in the same

cluster. Suzuki- Kasami’s algorithm is used in

intracluster communication; thus multiple token

existences are impossible [3]. On the other hand,

assume that more than one node belonging to different

clusters is in the CS at the same time. Since Ricart-

Agrawala’s algorithm is used for inter cluster

communications, this is also not possible [6]. There is

no other possibility; therefore we contradict our

assumption.

Lemma 2. At most one node can be in the CS at any

time, ensuring mutual exclusion.

Proof. Assume the contrary, that more than one node

can execute CS at any time concurrently. In

Algorithm1, when a node receives token, it enters CS.

If there is more than one token in the network, then

more than one node can

Execute CS at the same time. However, it is proven in

Lemma 1 that this case is not possible. Therefore, we

contradict our assumption.

Theorem:Ricart-agrawala-suzuki’s algorithm is

deadlock- and starvation free.

Proof. We use Suzuki-Kasami’s algorithm for intra

cluster communication and Ricart agrawala algorithm

for intercluster, communication. Both algorithms are

deadlock- and starvation free which is proven in [5, 6].

Thus, Raysuz’s algorithm is deadlock and starvation-

free.

B. Synchronization delay and response time

The synchronization delay of Suzuki-Kasami’s

algorithm is for a network consisting of nodes,

and to indicate the unit time for sending a message.

 The synchronization delay of Ricart-agrawala’s

algorithm is NT. Due to clustering of the whole

distributed network the synchronization delay and the

response time is reduced in the cluster if token is

already present in that cluster and this is the best case

of our proposed algorithm.

If the token is not present in that cluster and it is

present in the different cluster of the network and that

node is just entered in the CS then synchronization

delay is 2 (NT) of Ricart-agrawala-suzuki’s algorithm

at worst case

VI. CONCLUSION

In this work, we proposed a hierarchical distributed

mutual exclusion algorithm for mobile ad hoc

networks. The communication infrastructure to run the

algorithm consists of a number of clusters of mobile

nodes where each cluster is represented by a leader

and the leaders are connected to form a logical ring.

Due to this hierarchical structure, significant gains in

total message complexities, response times and

synchronization delays conform to theoretical analysis

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of

events in a distributed system,” Communications of

the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[2] G. Ricart and A. K. Agrawala, “An optimal

algorithm for mutual exclusion in computer

networks,” Communications of the ACM, vol. 24, no.

1, pp. 9–17, 1981.

[3] I. Suzuki and T. Kasami, “A distributed mutual

exclusion algorithm,” ACM Transactions on

Computer Systems, vol. 3, no.4, pp. 344–349, 1985.

[4] K. Raymond, “A tree-based algorithm for

distributed mutual exclusion,” ACM Transactions on

Computer Systems, vol. 7, no.1, pp. 61–77, 1989.

[5] M. Singhal, “A heuristically-aided algorithm for

mutual exclusion for distributed systems,” IEEE

Transactions on Computers, vol. 38, no. 5, pp. 70–78,

1989.

[6] M. Maekawa, “A root N algorithm for mutual

exclusion in decentralized systems,” ACM

Transactions on Computer Systems,vol. 3, no. 2, pp.

145–159, 1985.

[7] D. Agrawal and A. El Abbadi, “An efficient

solution to the distributed mutual exclusion problem,”

ACM Transactions on Computer Systems, vol. 9, no.

1, pp. 1–20, 1991.

 [8] S. Lodha and A. Kshemkalyani, “Afair

distributedmutual exclusion algorithm,” IEEE

Transactions on Parallel and Distributed Systems,

vol. 11, no. 6, pp. 537–549, 2000.

[9] L. Haitao & R. Gupta, (2004) “Selective Backbone

Construction for Topology Control in Ad Hoc

Networks”. In Proc. of the Intl. Conf. on Mobile Ad-

hoc and Sensor Systems, pp. 41-50. International

Journal of Computer Networks & Communications

(IJCNC) Vol.4, No.2, March 2012 147

 [10] W. Ya-feng, X. Yin-long, C. Guo-liang, & W.

Kun, (2004) “On the Construction of Virtual Multicast

Backbone for Wireless Ad Hoc Networks”. In Proc. of

the IEEE Intl. Conf. on Mobile Ad-hoc and Sensor

Systems, pp. 25-27.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142805 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 186

 [11] S. Srivastava & R. K. Ghosh, (2002) “Cluster

based Routing using a k-tree Core Backbone for

Mobile Ad hoc Networks”. In Proc. of the 6th Int.

Workshop on Discrete Algorithms and Methods for

Mobile Computing and Communications. pp. 14-23.

