
© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143039 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 609

Core Java : An Object Oriented Language

Ananya Anikesh

Department of Information & Technology Engineering

Dronacharya College Of Engineering, Khentawas, Gurgaon

Abstract- This research paper is a brief overview

about Core Java an object oriented language. Objects

are key to understanding object oriented technology.

The common practice of object oriented prototyping

is to define the fragments of java. High-level

languages allow some English-like words and

mathematical expressions that facilitate better

understanding of the logic involved in a program.

While solving problems using high-level languages,

importance was given to develop an algorithm (step-

by-step instructions to solve a problem). While

solving complex problems, a lot of difficulties were

faced in the algorithmic approach. Hence, object

oriented programming languages such as C++ and

Java were evolved with a different approach to solve

the problems. Object-oriented languages are also

high-level languages with concepts of classes and

objects.

I. INTRODUCTION

Java is a set of computer software and

specifications developed by Sun Microsystems,

later acquired by Oracle Corporation, that provides

a system for developing application software and

deploying it in a cross-platform computing

environment. Java is used in a wide variety

of computing platforms from embedded

devices and mobile phones to enterprise

servers and supercomputers. While less common,

Java applets run in secure, sandboxed environments

to provide many features of native applications and

can be embedded in HTML pages.

Writing in the Java programming language is the

primary way to produce code that will be deployed

as byte code in a Java Virtual Machine (JVM); byte

code compilers are also available for other

languages, including Ada, JavaScript, Python,

and Ruby. In addition, several languages have been

designed to run natively on the JVM,

including Scala, Clojure and Groovy. Java

syntax borrows heavily from C and C++, but

object-oriented features are modeled

after Smalltalk and Objective-C. Java eschews

certain low-level constructs such as pointers and

has a very simple memory model where every

object is allocated on the heap and all variables of

object types are references. Memory management

is handled through integrated automatic garbage

collection performed by the JVM.

II. CORE JAVA LANGUAGE

The syntax of Java is largely influenced by C++.

Unlike C++, which combines the syntax for

structured, generic, and object-oriented

programming, Java was built almost exclusively as

an object-oriented language. All code is written

inside classes, and every data item is an object,

with the exception of the primitive data

types, i.e. integers, floating-point numbers, boolean

values, and characters, which are not objects for

performance reasons. Java reuses some popular

aspects of C++ (such as printf() method).

Unlike C++, Java does not support operator

overloading or multiple inheritance for classes,

though multiple inheritance is supported

for interfaces. This simplifies the language and aids

in preventing potential errors and anti-

pattern design.

Java uses comments similar to those of C++. There

are three different styles of comments: a single line

style marked with two slashes (//), a multiple line

style opened with /* and closed with */, and

the Javadoc commenting style opened with /** and

closed with */. The Javadoc style of commenting

allows the user to run the Javadoc executable to

create documentation for the program.

© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143039 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 610

III. JAVA TO CORE JAVA TRANSLATION

We formulate the translation as a set of type-

directed rules that follow the syntax of the Java

source language. The rules are type preserving, that

is, they guarantee that both programs, the Java

input and the Core-Java output, have the same type.

Our algorithm consists of three main steps:

Generating Descriptors of Compilation Units. For

each compilation unit, we generate its attached

descriptor file. A descriptor consists of typing

information of each interface, class and their fields

and methods, but without the method body.

Computing the Global Dependency Graph. Our

translation is required to process the class and

interface declarations in some particular order

given by the complex inter-dependency among

classes, interfaces and methods. The dependency

graph has the class and interface declarations

organised into a hierarchy of strongly connected

components (SCCs). Through a bottom-up

processing of each SCC, we perform the translation

in a systematic fashion. The global dependency

graph is also kept after the translation to be used by

the subsequent program analyses. Translation. The

type-based translation is formulated as a modular

type inference for the Java input program. The

main judgement has the following form: D, Γ e ⇒

exp e : τ denoting the translation of a Java

expression e into a Core-Java expression e , where

e and e have the type τ with respect to the type

environment, Γ and the set of descriptors, D.

Details about our translation rules can be found in

the companion technical report.

IV. CONCLUSION AND FUTURE WORK

We have implemented the translator in Haskell and

we used it to help two analyses: a region inference

for Java and a type checker of a variant parametric

type system for Java . The translator was very

useful in extending the experiments of our projects

to real world applications. Our goal is to have an

integrated framework: translator, global

dependency graph and any other specific data

structure that can help and simplify the program

analyses. Another aspect is the correctness of the

translation rules. We experimentally validated that

translated programs are correct and currently we

are working on a formal proof of the translation

rules.

© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143039 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 611

REFERENCES

 [1] Gavin Bierman, Matthew Parkinson, and

Andrew Pitts. MJ: An imperative core calculus for

Java and Java with effects. Technical report,

Cambridge University, 2003.

 [2] Wei-Ngan Chin, Florin Craciun, Siau-Cheng

Khoo, and Corneliu Popeea. A Flow-Based

Approach for Variant Parametric Types. In ACM

OOPSLA, Portland, 2006.

[3] Wei-Ngan Chin, Florin Craciun, Shengchao

Qin, and Martin Rinard. Region Inference for an

Object-Oriented Language. In ACM PLDI,

Washington, 2004.

 [4] Florin Craciun, Hong Yaw Goh, and Wei-Ngan

Chin. A Framework for Object-Oriented Program

Analyses via Core-Java. Technical report, National

University of Singapore, 2006. avail. at

http://www.comp.nus.edu.sg/∼chinwn/papers/corej

ava.ps.

