
© July 2016| IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 149

Implementation of compressed JSON for Cloud API calls

Garima Dutt
1
, Anup Singh Kushwaha

2

1
M.Tech Scholar, ManavRachna College of Engineering, Faridabad ,India

2
Computer Science Department, ManavRachna College of Engineering, Faridabad ,India

Abstract—With the option of sharing resources and

storing database over the internet at different data

centers, cloud has been viewed as one of the most

imperative model for cost reduction and increasing

economy for various enterprises. Efficient methods for

structuring and formatting the data are imperative for

managing and mitigating data traffic between and

within cloud environments to avoid excessive

bandwidth cost and to ensure interoperability. This

provides better communication which is quintessential

for interoperable cloud deployments. The existing data

interchange formats for structuring and serializing data

have not yet been analyzed in terms of efficient

performance. Thus to address this issue, it is imperative

to determine an appropriate data interchange format

for cloud. In this paper, we have shown the

performance analysis of data interchange format to

assess their performance in terms of their usability in

realizing a common messaging format for

communicating data in Clouds. Firstly, we have

explained the characteristics of each data format for

clear understanding. To analyze the performance of

mediation services or data interchange formats we have

performed load testing in these services. Also, we have

chosen a security service or an encryption technique for

these mediation services which is a basic requirement to

encrypt the data. It has been found that, the Optimized

or Compressed JSON esteem acquired from

serialization and compressed technique demonstrates

an efficient mediation services for cloud API calls when

contrasted with other data interchange formats. The

test results in efficient mediation services which are

comprehensive and have notable impact on the rate at

which data is transmitted with improved performance.

Index Terms—Optimized JSON, Cloud API,

Encryption,

Data interchange formats, Serialization, Cloud

computing

I. INTRODUCTION

The need of data interchange formats has raised

because of speediest advancement in web and cloud

computing environment. It is a format for exporting

and importing spreadsheet data between different

programs and platforms. When two programs needs

to exchange data they need to agree a common

format for the data in transit. This could be a binary

format, or it could be a human readable text.The

binary format could be defined by one of numerous

pieces of middleware, or a public format such as

Google Protocol buffers. The text format could be

one of the titan of data formats : XML or JSON. Or it

could be something more old – fashioned, like

comma separated values (CSV). Transit is defined in

terms of an extensible set of elements used to

represent values. The elements correspond to

semantic types common across programming

languages, e.g., strings, arrays, URIs, etc. When an

object is written with Transit, a language-specific

Transit library maps the object's type to one of the

supported semantic types. Then it encodes the value

into Message Pack or JSON using the rules defined

for that semantic type. Whenever possible, data is

written directly to Message Pack or JSON using

those protocols' built-in types. For instance, a string

or an array from any language is always just

represented as a string or an array in Message Pack or

JSON. When a value cannot be represented directly

as a built-in type in Message Pack or JSON, it must

be encoded. Encoding captures the semantic type and

value of the data in a form that can be represented as

a built-in type in Message Pack or JSON, either a

string, a two element array or a JSON object or

Message Pack map (referred to as object/map in the

rest of this specification). When Transit data is read,

any encoded values are decoded and programming-

language appropriate representations are produced.

Transit defines the rules for encoding and decoding

semantically typed values. It does not define how

encoded data is stored, transmitted, or otherwise

used.

There are two write modes for JSON –

© July 2016| IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 150

 In normal JSON mode, caching is enabled and maps

are represented as arrays with a special marker

element. There is also JSON-Verbose mode, which is

less efficient, but easier for a person to read. In

JSON-Verbose mode, caching is disabled and maps

are represented as JSON objects. This is useful for

configuration files, debugging, or any other situation

where readability is more important than

performance. A JSON reader is expected to

transparently handle data written in either mode and

to remain unaware of which mode was used to write

the data.

II. JSON

JSON is a data interchange format which is really

simple, it has a self-documenting format, it is much

shorter because there is no data configuration

overhead. That is why JSON is considered a fat-free

alternative. Though it is one of the most used data

interchanged format, there is still room for

improvement. For instance, JSON uses excessively

quotes and key names are very often repeated. This

problem can be solved by JSON compression

algorithms. There are more than one available.

Example of JSON

{

“book”: [

{

“id” : “01”

“language” : “java”,

“edition”: “third”,

“author”: “Herbert Schildt”,

},

{

“id” : 07”

“language” : “C++”,

“edition”: “second”,

“author”: “E.Balagurusamy”,

}

]

}

JSON is built on two structures:

A collection of name/value pairs. In various

languages, this is realized as an object, record, struct,

dictionary, hash table, keyed list, or associative array.

An ordered list of values. In most languages, this is

realized as an array, vector, list, or sequence.

JSON's basic Data Types, Syntax and Example :

Number: a signed decimal number that may contain a

fractional part and may use exponential E notation,

but cannot include non-numbers like NaN. The

format makes no distinction between integer and

floating-point. JavaScript uses a double-precision

floating-point format for all its numeric values, but

other languages implementing JSON may encode

numbers differently.

String: a sequence of zero or

more Unicode characters. Strings are delimited with

double-quotation marks and support a backslash

escaping syntax.

Boolean: either of the values true or false.

Array: an ordered list of zero or more values, each of

which may be of any type. Arrays use square bracket

notation with elements being comma-separated.

Object: an unordered collection of name/value pairs

where the names (also called keys) are strings. Since

objects are intended to represent associative arrays. it

is recommended, though not required, that each key

is unique within an object. Objects are delimited

with curly brackets and use commas to separate each

pair, while within each pair the colon ':' character

separates the key or name from its value.

Null : An empty value, using the word null

Whitespace is allowed and ignored around or

between syntactic elements (values and punctuation,

but not within a string value). Four specific

characters are considered whitespace for this

© July 2016| IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 151

purpose: space, horizontal tab, line feed, and carriage

return. JSON does not provide any syntax for

comments.

Early versions of JSON (such as specified by RFC

4627) required that a valid JSON "document" must

consist of only an object or an array type, which

could contain other types within them. This

restriction was removed starting with RFC 7158, so

that a JSON document may consist entirely of any

possible JSON typed value.

JSON is a text format that is completely language

independent but uses conventions that are familiar to

programmers of the C-family of languages, including

C, C++, C#, Java, JavaScript, Perl, Python, and many

others. These properties make JSON an ideal data-

interchange language.

These are universal data structures. Virtually all

modern programming languages support them in one

form or another. It makes sense that a data format

that is interchangeable with programming languages

also be based on these structures.

In JSON, they take on these forms:

An object is an unordered set of name/value pairs. An

object begins with { (left brace) and ends with } (right

brace). Each name is followed by : (colon) and the

name/value pairs are separated by , (comma).

Figure (a) Object in JSON

An array is an ordered collection of values. An array

begins with [(left bracket) and ends with] (right

bracket). Values are separated by , (comma).

Figure (b) Array in JSON

A value can be a string in double quotes, or

a number, or true or false or null, or an object or

an array. These structures can be nested.

Figure (c) Value in JSON

 A string is a sequence of zero or more Unicode

characters, wrapped in double quotes, using

backslash escapes. A character is represented as a

single character string. A string is very much like a C

or Java string.

Figure (d) String in JSON

A number is very much like a C or Java number,

except that the octal and hexadecimal formats are not

used.

Figure (e) number in JSON

© July 2016| IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 152

Whitespace can be inserted between any pair of

tokens. Excepting a few encoding details, that

completely describes the language.

III. PROBLEM DEFINITION

As web services performances are imperative and

plays an eminent role in data transmission over the

network, We need more faster mediation services to

improve the performance which are faster , secure

and simple to understand.

IV. PROPOSED TECHNIQUE

Compressed JSON and its Features

JSON used to have an advantage because it could be

directly parsed by a java script engine, but even that

advantage is gone because of security and

interoperability concerns. Compression of JSON data

is useful when large data structures must be

transmitted from the web browser to the server. In

that direction, it is not possible to use gzip

compression, because it is not possible for the

browser to know in advance whether the server

supports gzip. The browser must be conservative,

because the server may have changed abilities

between requests.

FEATURES:

I. Serialization

When using JSON, we see that the frameworks

reduce the serialization time drastically. JSON

serialization appears to give us an gain of 50-97% in

serialization time.

II. Data Storage

From the data storage aspect, almost every data

interchange format take similar space such as Xml ,

JSON However, Xml based string definitely requires

more storage space. So if it comes to storing string,

JSON is the clear choice at benefit JSON still saves

some bytes and this is one reason some NoSQL

databases uses JSON based storage instead of XML

based storage. However, for quicker retrieval you

need to apply some indexing mechanisms too.

III. Data Transfer

Data transfer comes in picture when you are

transferring your objects on EMS / MQ / Web

Services. Keeping other parameters such as network

latency, availability, bandwidth, throughput, etc. as

constants in both cases amount of data transfer

becomes a function of data length or protocol used

over network. For EMS / MQ – Data length, as in

statistics, is lesser in case of JSON when sent asstring

and almost same when sending as compressed

bytes.ENCRYPTION

In cryptography, encryption is the process of

encoding messages or information in such a way that

only authorized parties can read it. Encryption does

not of itself prevent interception, but denies the

message content to the interceptor. In our work , We

will use an encryption Technique to encrypt and

decrypt the data before sending and receiving the

data over the Internet.

Compared Algorithms for Encryption for compressed

JSON

DES: (Data Encryption Standard), The DES was

once a predominant symmetric-key algorithm for the

encryption of electronic data. But now it is an

outdated symmetric key data encryption method.

DES uses 56 bits key for encryption and decryption.

It completes the 16 rounds of encryption on each 64

bits block of data.

3DES: As an enhancement of DES, the3DES (Triple

DES) encryption standard was proposed. In this

standard the encryption method is similar to the one

in original DES but applied 3 times to increase the

encryption level. But it is a known fact that 3DES is

slower than other block cipher methods. Encryption

strength is directly tied to key size, and 56-bit key

lengths have become too small relative to the

processing power of modern computers. So, 3DES is

simply the DES symmetric encryption algorithm,

used three times on the same data. Three DES is also

called as T-DES. It uses the simple DES encryption

algorithm three times to enhance the security of

encrypted text.

AES: (Advanced Encryption Standard), is the new

encryption standard.AES is actually, three block

ciphers, AES-128, AES-192 and AES-256. Each

cipher encrypts and decrypts data in blocks of 128

bits using cryptographic keys of 128 bits, 192 bits

and 256 bits, respectively. In Advanced encryption

© July 2016| IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 153

standard there are 10 rounds for 128-bit keys, 12

rounds for 192-bit keys, and 14 rounds for 256-bit

keys. Brute force attack is the only effective attack

known against it, in which the attacker tries to test all

the characters combinations to unlock the encryption.

Both AES and DES are block ciphers.

Blowfish: It is one of the most common public

domain encryption algorithms, Blowfish is a variable

length key, 64-bit block cipher. The Blowfish

algorithm was first introduced in 1993.This algorithm

can be optimized in hardware applications though it's

mostly used in software applications. Though it

suffers from weak keys problem, no attack is known

to be successful against. It operates on block size 64

bits. It is a 16-round Feistel cipher and uses large key

dependent S-Boxes. Each S-box contains 32 bits of

data.

Figure (f)

Figure(f) compares all four algorithms throughput

parameter in terms of performance. Throughput is

calculated as request per unit time.

Payload

Data

Throughput (Mb/Sec)

3DES DES AES Blowfish

10 20 40 60 100

20 50 70 90 180

30 70 90 100 260

40 90 110 130 320

50 100 130 180 440

60 130 150 270 550

70 160 200 380 700

 Table 1

Table 1 shows the difference in throughput(Mb/Sec)

when different payload data is applied to the given

encryption algorithms and Blowfish efficiency in terms

of throughput.

Compressing JSON with CJSON

algorithm

CSJON compress the JSON with automatic type

extraction. It tackles the most pressing problem: the

need to constantly repeat key names over and over.

Using this compression algorithm, the following

JSON:

[

{ // This is a point

 "x": 100,

 "y": 100

 }, { // This is a rectangle

 "x": 100,

 "y": 100,

 "width": 200,

 "height": 150

 },

 {}, // an empty object

]

Can becompressedas:

{

 "templates": [

 [0, "x", "y"], [1, "width", "height"]

],

 "values": [

{ "values": [1, 100, 100] },

{ "values": [2, 100, 100, 200, 150] },

 {}

© July 2016| IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 154

]

}

Compressed JSON removes the key: value pair of

json's encoding to store keys and values in separate

parallel arrays:

//uncompressed JSON

JSON = {

Data : [

 { field1 : ‘data1’, field2 : ‘data2’, field3 :

‘data2’ },

{ field1 : ‘data4’, field2 : ‘data5’, field3 : ‘data6’ },

…..

]

};

//compressed JSON

JSON = {

 Data : [‘data1’, ‘data2’, ‘data3’, ‘data4’, ‘data5’,

‘data6’],

Keys : [‘field1’, ‘field2’, ‘field3’]

};

More Reduction

If the field is repeated very often and it is a string

type, you can get compressed a little be more if you

add a distinct list of that field... for instance, a field

name job position, city, etc are excellent candidate

for this. You can add a distinct list of this items and

in each item change the value for a reference number.

That will make JSON more lite.

PERFORMANCE ANALYSIS AFTER LOAD

TESTING

As we created services and performed load testing

using Apache Jmeter tool, and the graph represents

the major difference between Optimized JSON and

XML as Optimized JSON is taking less time

compare to XML

Figure (g)

Figure (h)

Figure (h) explains the time comparison between

optimized JSON Direct and XML Direct for minimum,

average and maximum time milliseconds.

V. CONCLUSION

The proficiency of the proposed mediation services

has been tried regarding performance analysis of

optimized services in terms of simplicity and

calculating time. The outcome demonstrates a

0.051 0.055
0.093

0.111

0.177

0.317

OPTIMIZED JSON DIRECT XML DIRECT

Minimum (ms) Avg (ms) Maximum (ms)

© July 2016| IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 155

surprising change as far as data storage capacity and

altogether lessened calculation time. The results are

better than all other well known algorithms proposed.

Summing up the proposed algorithm is a better

replacement of the entire group of compared

algorithm in terms of comprehensibility, reduced

complexity, reduced computation time and

acceptable indeed better than other data interchange

formats.

REFERENCES

[1] Extensible markup language (xml) 1.0 (fourth

edition). W3C, 2006.

http://www.w3.org/TR/2006/REC-xml-

20060816

[2] Alexander (2007). "JSON Pros and Cons ".

Retrieved April 25,

2012,fromhttp://myarch.com/json-pros-and-cons.

[3] Sporny, M. (2010). "Web Services: JSON vs.

XML." Retrieved June 02,2012, from

http://digitalbazaar.com/2010/11/22/json-vs-

xml/.

[4] RajdeepBhanot and Rahul Hans, A Review and

Comparative Analysis of Various Encryption

Algorithms, International Journal of Security and

Its Applications Vol. 9, No. 4 (2015), pp. 289-

306.

[5] E. Biham and A. shamir, "A differential

cryptoanalysis of data encryption stamdard",

Springer-verlag, (1993).

[6] B. Schneier, “Description of a New Variable-

Length Key, 64-Bit Block Cipher (Blowfish)”,

[online] Available at:

http://www.schneier.com/paper-

blowfishfse.html.

[7] S. Basuin, “International data encryption

algorithm (idea) – a typical illustration”, Journal

of global research in computer science (JGRCS),

vol. 2, no 7, (2011).

[8] A. Kakkar and M. L Singh, “Comparison of

Various Encryption Algorithms and Techniques

for Secured Data Communication in Multinode

Network”, Published in International Journal of

engg, and technology(IJET), vol. 2, no. 1,

(2012).

[9] J. Daemen, R. Govaerts and J. Vandewalle,

“Weak Keys for IDEA”, Springer-Verlag,

(1998).

[10] M. Abutaha, M. Farajallah, R. Tahboub and M.

Odeh, “Survey Paper: Cryptography Is the

Science of Information Security”, published in

International Journal of Computer Science and

Security (IJCSS), vol. 5, no. 3, (2011).

[11] GarimaDutt, Anup S. Kushwaha, Review Of

JSON Data Interchange Format, published in

International Journal Of Innovative Research In

Technology (IJIRT),Volume 3 Issue 1 June 2016

.

[12] JSON. json.org. http://www.json.org

[13] Querying JSON with Oracle Database 12C,

Oracle White Paper, July 2015.

[14] Bruno Gil, P. T. (2011). Impacts of data

interchange formats on energy consumption and

performance in smart phones. OSDOC '11b

Proceedings of the 2011 Workshop on Open

Source and Design of Communication, NY, USA

ACM.

[15] C. Zakas, N. M., J. and Fawcett, J. (2006).

Professional AJAX, University of Huddersfield.

[16] EICHORN, J. (2006). Understanding AJAX

United States: prentice hall, University of

Huddersfield.

[17] Esposito, D. (2007). Introducing Microsoft

ASP.NET AJAX Microsoft Press, University of

Huddersfield

Iftikhar Ahmad, A. A., Abdullah SharafAlghamdi

(2010). "Evaluatingn Intrusion Detection

Approaches Using Multi-criteria Decision

Making Technique." International Journal of

Information Sciences &

