
© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144798 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 32

An Efficient Single and Double-Adjacent Error

Correcting Parallel Decoder for the (24, 12) Extended

Golay Code

Palla Vasavi Devi1, B.Venkateswramma

2

M.Tech. PG Scholar, Gouthami Institute of Technology & Management for Women, Proddatur

Assistant Professor, Gouthami Institute of Technology & Management for Women, Proddatur

Abstract- Memories that operate in harsh

environments, like for example space, suffer a

significant number of errors. The error correction

codes (ECCs) are routinely used to ensure that those

errors do not cause data corruption. However, ECCs

introduce overheads both in terms of memory bits and

decoding time that limit speed. In particular, this is an

issue for applications that require strong error

correction capabilities. A number of recent works

have proposed advanced ECCs, such as orthogonal

Latin squares or difference set codes that can be

decoded with relatively low delay. The price paid for

the low decoding time is that in most cases, the codes

are not optimal in terms of memory overhead and

require more parity check bits. On the other hand,

codes like the (24, 12) Golay code that minimize the

number of parity check bits have a more complex

decoding. A compromise solution has been recently

explored for Bose–Chaudhuri–Hocquenghem codes.

The idea is to implement a fast parallel decoder to

correct the most common error patterns(single and

double adjacent) and use a slower serial decoder for

the rest of the patterns. In this brief, it is shown that

the same scheme can be efficiently implemented for

the (24, 12) Golay code. In this case, the properties of

the Golay code can be exploited to implement a

parallel decoder that corrects single- and double-

adjacent errors that is faster and simpler than a

single-error correction decoder. The evaluation results

using a 65-nm library show significant reductions in

area, power, and delay compared with the traditional

decoder that can correct single and double-adjacent

errors. In addition, the proposed decoder is also able

to correct some triple-adjacent errors, thus covering

the most common error patterns. The proposed

architecture of this paper analysis is the logic size and

area using Xilinx 14.3.

Index Terms-Software quality assurance, Software

engineering.

I. INTRODUCTION

The Harsh environments, like space, are a challenge

for electronic circuits in general and for memories in

particular. For example, radiation causes several

types of errors that can disrupt the circuit

functionality. One common error for SRAM

memories is soft errors that change the value of one

or more memory cells. To avoid corruption in the

data stored in the memory, error correction codes

(ECCs) are commonly used. ECCs adds parity check

bits to each memory word to detect and correct

errors. This requires an encoder to compute those bits

when writing to the memory and a decoder to detect

and correct errors when reading from the memory.

These elements increase the memory area and the

power consumption, and can also reduce the access

speed. These overheads increase with the error

correction capability of the ECC. Traditionally, codes

that can correct a single bit error per word have been

used. In particular, single error correction–double

error detection (SEC–DED) codes that can also detect

double errors are commonly used. In recent years, the

number of errors that affect more than one memory

cell has increased significantly. This is due to the

scaling of the memory cells and is projected to grow

further. These errors, known as multiple cells upsets

(MCUs), pose a challenge for SEC–DED codes. One

solution to ensure that the MCU errors can be

corrected is to interleave the bits of different logical

words so that an MCU affects one bit per word. This

is based on the observation that the cells affected by

an MCU are physically close. Interleaving, however,

has a cost as it complicates the memory design. In

some space applications, there is an additional issue

as the number of errors is high, and SEC–DED codes

may not be sufficient when errors accumulate over

time. These issues have led to an increased interest

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144798 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 33

on the use of more advanced ECCs to protect SRAM

memories. As MCUs affect cells that are close

together, a number of codes that can correct double-

adjacent or triple-adjacent errors have been recently

proposed. These codes, in many cases, do not require

additional parity check bits and in the rest require

only one or two additional bits. The decoding

complexity increases but in many cases can still be

implemented with limited impact on the memory

speed. These codes are useful for applications in

which the error rate is low; however, when the error

rate is large, codes that can correct errors on multiple

independent bits are needed. Research for multibit

ECCs has focused on reducing the decoding latency

as in many cases; the traditional decoders are serial

and require several clock cycles. To some extent this

can be done for some traditional ECCs by using a

parallel syndrome decoder butthe decoder complexity

explodes as the error correction capability or the

word size increases. Another approach is to use codes

that can be decoded with low delay, such as

orthogonal Latin squares (OLSs) or difference set

(DS) codes. In the case of OLS codes, the main issue

is that they are not optimal in terms of the number of

parity check bits and thus require more memory

overhead. The DS codes are more competitive in

terms of parity check bits but are still not optimal for

some word lengths. For example, the (21, 10) DS

code can correct 2-bit errors while a code with a

similar block size and code rate, and the (24, 12)

extended Golay code can correct 3-bit errors.

However, the Golay code requires a more complex

decoder that needs several clock cycles. Namba et al.

Have proposed a compromise solution for Bose–

Chaudhuri–Hocquenghem codes. The idea is that the

most common error patterns are decoded in parallel

and the rest serially. In particular, single and double-

adjacent errors are corrected in a single clock cycle.

This means that the most memory accesses can be

completed in a single clock cycle, and only a small

percentage of the words in error require a full serial

decoding. This can enable the use of traditional ECCs

that do not support fast parallel decoding to protect

SRAM memories In this brief, the use of the scheme

in is considered for the (24,12) Golay code. In more

detail, an efficient parallel decoder capable of

correcting the single and double-adjacent errors is

presented. The decoder exploits the properties of the

Golay code to reduce the implementation cost. This

result in a decoder that is simpler than a traditional

SEC decoder but that can also correct all double-

adjacent errors and some triple-adjacent errors. The

proposed decoder has been implemented in hardware

description language and mapped to a 65- nm

technology to show its benefits. The main

contribution of this brief is to enable a fast and

efficient parallel correction of the single and double-

adjacent errors in the (24, 12) Golay code.

Fig. Parity check matrix of the (24, 12) Golay Code

with the proposed bit placement

II. PRELIMINARIES

The ECCs add parity check bits to each memory

word to detect and correct errors. This requires an

encoder to compute those bits when writing to the

memory and a decoder to detect and correct errors

when reading from the memory. These elements

increase the memory area and the power

consumption, and can also reduce the access speed.

These overheads increase with the error correction

capability of the ECC. Traditionally, codes that can

correct a single bit error

per word have been used. In particular, single error

correction–double error detection (SEC–DED) codes

that can also detect double errors are commonly used.

The use of the scheme is considered for the(24,12)

Golay code. In more detail, an efficient parallel

decoder capable of correcting the single and double-

adjacent errors is presented.The decoder exploits the

properties of the Golay code to reduce the

implementation cost. This results in a decoder that is

simpler than a traditional SEC decoder but that can

also correct all double-adjacent errors and some

triple-adjacent errors. The proposed decoder has been

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144798 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 34

implemented in hardware description language and

mapped to a 65-nm technology to show its benefits.

The main contribution of this brief is to enable a fast

and efficient parallel correction of the single and

double-adjacent errors in the (24,12) Golay code.

ERROR CORRECTION AND DETECTION:

In information theory and coding theory with

applications in computer science and

telecommunication, error detection and correction or

error control are techniques that enable reliable

delivery of digital data over unreliable

communication channels. Many communication

channels are subject to channel noise, and thus errors

may be introduced during

Transmission from the source to a receiver. Error

detection techniques allow detecting such errors,

while error correction enables reconstruction of the

original data in many cases. The general definitions

of the terms are as follows:

•Error detection is the detection of errors caused by

noise or other impairments during TRANSMISSION

from the transmitter to the receiver.

•Error correction is the detection of errors and

reconstruction of the original, error-free data

OVERVIEW:

The general idea for achieving error detection and

correction is to add some redundancy (i.e., some

extra data) to a message, which receivers can use to

check consistency of the delivered message, and to

recover data determined to be corrupted. Error-

detection and correction schemes can be either

systematic or non-systematic: In a systematic

scheme, the transmitter sends the original data, and

attaches a fixed number of check bits (or parity data),

which are derived from the data bits by some

deterministic algorithm. If only error detection is

required, a receiver can simply apply the same

algorithm to the received data bits and compare its

output with the received check bits; if the values do

not match, an error has occurred at some point during

the transmission. In a system that uses a non-

systematic code, the original message is transformed

into an encoded message that has at least as many

bits as the original message. Good error control

performance requires the scheme to be selected based

on the characteristics of the communication channel.

Common channel models include memory-less

models where errors occur randomly and with a

certain probability, and dynamic models where errors

occur primarily in bursts. Consequently, error-

detecting and correcting codes can be generally

distinguished between random-error-

detecting/correcting and burst-error-

detecting/correcting. Some codes can also be suitable

for a mixture of random errors and burst errors . If the

channel capacity cannot be determined, or is highly

variable, an error-detection scheme may be combined

with a system for retransmissions of erroneous data.

This is known as automatic repeat request (ARQ),

and is most notably used in the Internet. An alternate

approach for error control is hybrid automatic repeat

request (HARQ), which is a combination of ARQ and

error-correction coding.

IMPLEMENTATION:

Error correction may generally be realized in two

different ways:

Automatic repeat request (ARQ) (sometimes also

referred to as backward error correction): This is an

error control technique whereby an error detection

scheme is combined with requests for retransmission

of erroneous data. Every block of data received is

checked using the error detection code used, and if

the check fails, retransmission of the data is requested

– this may be done repeatedly, until the data can be

verified.

Forward error correction (FEC): The sender encodes

the data using an error-correcting code (ECC) prior to

transmission. The additional information

(redundancy) added by the code is used by the

receiver to recover the original data. In general, the

reconstructed data is what is deemed the "most

likely" original data.

ARQ and FEC may be combined, such that minor

errors are corrected without retransmission, and

major errors are corrected via a request for

retransmission: this is called hybrid automatic repeat-

request (HARQ)

III. IMPORTANCE OF HDLS

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144798 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 35

HDLs have many advantages compared to traditional

schematic-based design.

•Design can be described at a very abstract level by

us of HDLs.Designers can write their RTL

description without choosing a specific fabrication

technology. Logic synthesis tools can automatically

convert the design to any fabrication technology. If a

new technology emerges, designers do not need to

redesign their circuit. They simply input the RTL

description to the logic synthesis tool and create a

new gate level netlist,using the new fabrication

technology. The logic synthesis tool will optimize the

circuit in area and timing for the new technology.

•By describing designs in HDLs,functional

verification of the design can be done early in the

design cycle. Since designers work at the RTL level,

they can optimize and modify the RTL description

until it meets the desired functionality. Most design

bugs are eliminated at this point. This cuts down

design cycle time significantly because the

probability of hitting a functional bug at a later time

in the gate-level netlist or physical layout is

minimized.

•Designing with HDLs is analogous to computer

programming. A textual description with comments

is an easier way to develop and debug circuits. This

also provides a concise representation of the design,

compared to gate-level schematics. Gate-level

schematics are almost incomprehensible for very

complex designs.

•HDL-based designs are here to stay. With rapidly

increasing complexities of digital circuits and

increasingly sophisticated EDA tools,HDLs are now

the dominant method for large digital designs. No

digital circuit designer can afford to ignore HDL

based design.

Verilog HDL has evolved as a standard hardware

description language. Verilog HDL offers many

useful features

•Verilog HDL is a general-purpose hardware

description language that is easy to learn and easy to

use. It is similar in syntax to the C programming

language. Designers with C programming experience

will find it easy to learn Verilog HDL.

•Verilog HDL allows different levels of abstraction to

be mixed in the same model. Thus, a des igner can

define a hardware model in terms of switches, gates,

RTL, or behavioral code. Also, a designer needs to

learn only one language for stimulus and hierarchical

design.

•Most popular logic synthesis tools support Verilog

HDL. This makes it the language of choice for

designers.

•All fabrication vendors provide Verilog HDL

libraries for post logic synthesis simulation. Thus,

designing a chip in Verilog HDL allows the widest

choice of vendors.

•The Programming Language Interface (PLI) is a

powerful feature that allows the user to write custom

C code to interact with the internal data structures of

Verilog. Designers can customize a Verilog HDL

simulator to their needs with the PLI.

•The speed and complexity of digital circuits have

increased rapidly. Designers have responded by

designing at higher levels of abstraction. Designers

have to think only in terms of functionality. EDA

tools take care of the implementation details. With

designer assistance, EDA tools have become

sophisticated enough to achieve a close-to-optimum

implementation.

•The most popular trend currently is to design in

HDL at an RTL level, because logic synthesis tools

can create gate-level net lists from RTL level design.

Behavioral synthesis allowed engineers to design

directly in terms of algorithms and the behavior of

the circuit, and then use EDA tools to do the

translation and optimization in each phase of the

design.

•However, behavioral synthesis did not gain

widespread acceptance. Today, RTL design continues

to be very popular. Verilog HDL is also being

constantly enhanced to meet the needs of new

verification methodologies.

•Formal verification and assertion checking

techniques have emerged. Formal verification applies

formal mathematical techniques to verify the

correctness of Verilog HDL descriptions and to

establish equivalency between RTL and gate-level

net lists. However, the need to describe a design in

Verilog HDL will not go away. Assertion checkers

allow checking to be embedded in the RTL code.

This is a convenient way to do checking in the most

important parts of a design.

•New verification languages have also gained rapid

acceptance. These languages combine the parallelism

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144798 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 36

and hardware constructs from HDLs with the object

oriented nature of C++. These languages also provide

support for automatic stimulus creation, checking,

and coverage. However, these languages do not

replace Verilog HDL. They simply boost the

productivity of the verification process. Verilog HDL

is still needed to describe the design.

•For very high-speed and timing-critical circuits like

microprocessors, the gate-level netlist provided by

logic synthesis tools is not optimal. In such cases,

designers often mix gate-level description directly

into the RTL description to achieve optimum results.

This practice is opposite to the high-level design

paradigm, yet it is frequently used for high-speed

designs because designers need to squeeze the last bit

of timing out of circuits, and EDA tools sometimes

prove to be insufficient to achieve the desired results.

•Another technique that is used for system-level

design is a mixed bottom-up methodology where the

designers use either existing Verilog HDL modules,

basic building blocks, or vendor-supplied core blocks

to quickly bring up their system simulation. This is

done to reduce development costs and compress

design schedules. For example, consider a system

that has a CPU, graphics chip, I/O chip, and a system

bus.

•The CPU designers would build the next-generation

CPU themselves at an RTL level, but they would use

behavioral models for the graphics chip and the I/O

chip and would buy a vendor-supplied model for the

system bus. Thus, the system-level simulation for the

CPU could be up and running very quickly and long

before the RTL descriptions for the graphics chip and

the I/O chip are completed.

TYPICAL DESIGN FLOW:

A typical design flow for designing VLSI-IC circuits

show the level of design representation shaded blocks

show processes in the design flow. The design flow

used by designers who use HDLs. In any design,

specifications are written first. Specifications

describe abstractly the functionality, interface, and

overall architecture of the digital circuit to be

designed. At this point, the architects do not need to

think about how they will implement this circuit. A

behavioral description is then created to analyze the

design in terms of functionality, performance, and

compliance to standards, and other high-level issues.

Behavioral descriptions are often written with HDLs.

The behavioral description is manually converted to

an RTL description in an HDL.

Fig. Typical Design Flow

Logic synthesis tools convert the RTL description to

a gate-level net list. A gate-level net list is a

description of the circuit in terms of gates and

connections between them. Logic synthesis tools

ensure that the gate-level net list meets timing, area,

and power specifications. The gate-level net list is

input to an Automatic Place and Route tool, which

creates a layout. The layout is verified and then

fabricated on a chip.

Thus, most digital design activity is concentrated on

manually optimizing the RTL description of the

circuit. After the RTL description is frozen, EDA

tools are available to assist the designer in further

processes. Designing at the RTL level has shrunk the

design cycle times from years to a few months. It is

also possible to do many design iterations in a short

period of time. Behavioral synthesis tools have begun

to emerge recently. These tools can create RTL

descriptions from a behavioral or algorithmic

description of the circuit. As these tools mature,

digital circuit design will become similar to high-

level computer programming. Designers will simply

implement the algorithm in an HDL at a very abstract

level. EDA tools will help the designer convert the

behavioral description to a final IC chip.

It is important to note that, although EDA tools are

available to automate the processes and cut design

cycle times, the designer is still the person who

controls how the tool will perform. EDA tools are

also susceptible to the "GIGO : Garbage In Garbage

Out" phenomenon. If used improperly, EDA tools

will lead to inefficient designs. Thus, the designer

still needs to understand the nuances of design

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144798 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 37

methodologies, using EDA tools to obtain an

optimized design.

IV. (24, 12) EXTENDED GOLAY CODE

The (24, 12) extended Golay code is obtained by

adding an overall parity check bit to the (23, 12)

Golay code. This code is a perfect code with a

minimum distance of seven and has been widely

studied. The extended code has a minimum distance

of eight, and therefore can correct 3-bit errors and

detect 4-bit errors. It has been used in many

applications including space missions that require

strong error correction capabilities. The decoding of

the Golay code is done in a series of steps, and

requires several clock cycles. For example, 27 clock

cycles are needed in the implementation presented in.

This, as discussed before, is not suitable for SRAM

protection. To the best of our knowledge, no SEC-

DAEC parallel decoder optimized for the Golay code

has been proposed in the literature. The parity check

matrix of the (24, 12) Golay code is shown in Fig. 1.

The 12 first bits correspond to the parity check bits

and last 12 to the data bits. A single-error correcting

parallel decoder can be implemented by computing

the syndrome and comparing in parallel with the 12

data bit and the 12 check bit columns. When there is

a match that bit is corrected. The requirement for

SEC is that the columns must be different. Therefore,

it would seem possible to use a subset of the parity

bits to decode single errors. However, since the code

can correct three errors, we need to ensure that the

single-error parallel decoder does not introduce

erroneous corrections in the presence of multiple bit

errors. For example, if we use an SEC-DAEC code

with a minimum distance of four, a triple error can

cause a mis correction in the SEC-DAEC decoding

phase. A 4-bit error may not be even detected by the

SEC-DAEC decoder. Therefore, the full syndrome is

used for comparisons in all the cases to ensure that

triple errors do not trigger miscorrections and 4-bit

errors are detected.

Proposed sec-daec parallel decoder:

The existing SEC-DAEC decoders are

similar to SEC decoders but they need to check also

the syndrome values that correspond double adjacent

errors. This requires roughly doubling the number of

comparisons. Then, the correction of each bit is

triggered by three syndrome values (the single bit and

the two double adjacent). This results in a decoder

that is significantly more complex than a simple SEC

decoder. The proposed parallel decoder as discussed

before has the objective of correcting single and

double-adjacent bit errors. The first step is to place

the bits in the memory such that data and parity bits

are interleaved, as shown in Fig. 2. This interleaving

has no impact on memory performance, as it is a

simple remapping of the bits when they are read from

or written to the memory. Let us now consider the

syndrome values for an error on the second bit (first

data bit), a double adjacent on bits one and two, a

double adjacent on bits two and three, and a triple

adjacent on bits one, two, and three. In all those

cases, bit two should be corrected. The syndrome

values for those error patterns are shown in Fig. 3.

The interesting observation is that the first two rows

are the only ones that change from one pattern to

another and that the values cover the four possible

combinations of the first two bits. This means that the

decoding can be done by simply comparing the

remaining ten bits with the last ten bits of the

syndrome. If they match, then the second bit (first

data bit) has to be corrected. It can be observed that

the same reasoning applies to the rest of the data bits,

except the last one. For the last bit, there are only two

values to check (single and double adjacent with bit

23). In this case, it is easy to see that this can be done

by checking the first 11 bits only. The previous

discussion shows how parallel decoding can be

efficiently implemented. In fact, the proposed parallel

decoder will be simpler than an SEC decoder. Table I

summarizes the comparators needed for each of the

different decoders. A comparator is needed for each

syndrome value that triggers a correction. For an SEC

code, this is simply 24 while for a traditional SEC-

DAEC code is 47. In the case of the proposed

decoder, 12 comparators cover both single bit errors

on the data bits and double adjacent bit errors, and

another 12 are needed to cover single errors on the

check bits giving a total of 24. It can be observed that

the proposed decoder needs less comparator and also

less bits in some of them. Both factors help to reduce

the decoder complexity. In Section IV, the benefits

will be evaluated for a design mapped to a 65-nm

technology. The proposed parallel decoder also has to

detect errors that it cannot correct. In those cases, the

serial decoder must be used to correct the error. The

logic needed to detect those errors is simply a check

for a no zero syndrome and a check that none of the

comparators has detected a match. The first part can

be implemented with a 12-input OR gate and the

second with another 24-input OR gate. It should be

noted that the same idea can be partly applied to

other triple ECCs even if the number of parity check

and data bits is not the same. In more detail, when

there are more data bits, the first data bits can also be

interleaved with parity bits and decoded with the

proposed scheme, while for the rest, a traditional

SEC-DAEC decoding can be used. The application of

the proposed scheme to other codes is left for future

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144798 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 38

work.

Fig. Example syndrome values for errors that effects

first data bit in the proposed bit placement

V.SIMULATION TOOLS

The below figure shows the behavioral simulation of

the synthesized design.

Fig: Simulation Result

VI. CONCLUSION

In this brief, a single and double-adjacent error

correcting parallel decoder for the (24, 12) extended

Golay code has been proposed. The decoder uses the

properties of the code to achieve an efficient

implementation. In fact, the proposed decoder is not

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144798 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 39

only much simpler than a traditional SEC-DAEC

decoder, but also simpler than a standard SEC

decoder for the Golay code. To evaluate the benefits

of the new decoder, it has been implemented in HDL

and mapped to a 65-nm library. The results confirm

that significant reductions in area, delay, and power

consumption can be obtained compared with the

traditional SEC-DAEC decoder. The new SEC-

DAEC parallel decoder can be used in conjunction

with a serial decoder so that the most common error

patterns are corrected in one clock cycle

REFERENCES

[1] R. D. Schrimpf and D. M. Fleetwood, Radiation

Effects and Soft Errors in Integrated Circuits and

Electronic Devices. Singapore:World Scientific,

2004.

[2] R. C. Baumann, “Soft errors in advanced

computer systems,” IEEE Des. Test. Compute.,

vol. 22, no. 3, pp. 258–266, May/Jun. 2005.

[3] C. L. Chen and M. Y. Hsiao, “Error-correcting

codes for semiconductor memory applications: A

state-of-the-art review,” IBM J. Res. Develop.,

vol. 28, no. 2, pp. 124–134, Mar. 1984.

[4] M. Y. Hsiao, “A class of optimal minimum odd-

weight-column SEC-DED codes,” IBM J. Res.

Develop., vol. 14, no. 4, pp. 301–395, Jul. 1970.

[5] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and

T. Toba, “Impact of scaling on neutron-induced

soft error in SRAMs from a 250 nm to a 22 nm

design rule,” IEEE Trans. Electron Devices, vol.

57, no. 7, pp. 1527–1538, Jul. 2010.

[6] P. Reviriego, J. A. Maestro, S. Baeg, S. Wen,

and R. Wong, “Protection of memories suffering

MCUs through the selection of the optimal

interleaving distance,” IEEE Trans. Nucl. Sci.,

vol. 57, no. 4, pp. 2124–2128, Aug. 2010.

[7] S. Satoh, Y. Tosaka, and S. A. Wender,

“Geometric effect of multiple-bit soft errors

induced by cosmic ray neutrons on DRAM’s,”

IEEE ElectronDevice Lett., vol. 21, no. 6, pp.

310–312, Jun. 2000.

[8] A. Neale and M. Sachdev, “A new SEC-DED

error correction code subclass for adjacent MBU

tolerance in embedded memory,” IEEETrans.

Device Mater. Rel., vol. 13, no. 1, pp. 223–230,

Mar. 2013.

[9] M. A. Bajura et al., “Models and algorithmic

limits for an ECC-based approach to hardening

sub-100-nm SRAMs,” IEEE Trans. Nucl. Sci.,

vol. 54, no. 4, pp. 935–945, Aug. 2007.

[10] A. Dutta and N. A. Touba, “Multiple bit upset

tolerant memory using a selective cycle

avoidance based SEC-DED-DAEC code,” in

Proc. IEEEVLSI Test Symp., May 2007, pp.

349–354.

[11] Z. Ming, X. L. Yi, and L. H. Wei, “New SEC-

DED-DAEC codes for multiple bit upsets

mitigation in memory,” in Proc. IEEE/IFIP 20th

Int.Conf. VLSI Syst.-Chip, Oct. 2011, pp. 254–

259.

[12] L.-J. Saiz-Adalid, P. Reviriego, P. Gil, S.

Pontarelli, and J. A. Maestro, “MCU tolerance in

SRAMs through low-redundancy triple adjacent

error correction,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., to be published.

[13] R. Naseer and J. Draper, “DEC ECC design to

improve memory reliability in sub-100 nm

technologies,” in Proc. IEEE ICECS, Aug./Sep.

2008, pp. 586–589.

[14] M. Y. Hsiao, D. C. Bossen, and R. T. Chien,

“Orthogonal Latin square codes,” IBM J. Res.

Develop., vol. 14, no. 4, pp. 390–394, Jul. 1970.

[15] S.-F. Liu, P. Reviriego, and J. A. Maestro,

“Efficient majority logic fault detection with

difference-set codes for memory applications,”

IEEETrans. Very Large Scale Integr. (VLSI)

Syst., vol. 20, no. 1, pp. 148–156, Jan. 2012.

[16] M. J. E. Golay, “Notes on digital coding,” Proc.

IEEE, vol. 37, p. 657, Jun. 1949.

[17] S. Sarangi and S. Banerjee, “Efficient hardware

implementation of encoder and decoder for

Golay code,” IEEE Trans. Very Large

ScaleIntegr. (VLSI) Syst., to be published.

[18] K. Namba, S. Pontarelli, M. Ottavi, and F.

Lombardi, “A single-bit and double-adjacent

error correcting parallel decoder for multiple-bit

error correcting BCH codes,” IEEE Trans.

Device Mater. Rel., vol. 14, no. 2, pp. 664–671,

Jun. 2014.

[19] S. Lin and D. J. Costello, Error Control Coding,

2nd ed. Englewood Cliffs, NJ, USA: Prentice-

Hall, 2004.

[20] E. R. Berlekamp, “Decoding the Golay code,”

Jet Propulsion Lab., Pasadena, CA, USA, Tech.

Rep. 32-1526, 1971, pp. 81–84.

