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Abstract-This paper proposes a simple and efficient 

Montgomery multiplication algorithm such that the 

low-cost and high-performance Montgomery modular 

multiplier can be implemented accordingly. Full -adder 

or two serial half-adders, is proposed to reduce the 

extra clock cycles for operand pre computation and 

format conversion by half. In addition, a mechanism 

that can detect and skip the unnecessary carry-save 

addition operations in the one-level CCSA 

architecture while maintaining the short critical path 

delay is developed. As a result, the extra clock cycles 

for operand pre computation and format conversion 

can be hidden and high throughput can be obtained. 

Experimental results show that the proposed 

Montgomery modular multiplier can achieve higher 

performance and significant area–time product 

Improvement when compared with previous design. 

I. INTRODUCTION 

The IN MANY public-key cryptosystems [1]–[3], 

modular multiplication (MM) with large integers is 

the most critical and time-consuming operation. 

Therefore, numerous algorithms and hardware 

implementation have been presented to carry out the 

MM more quickly, and Montgomery’s algorithm is 

one of the most well-known MM algorithms. 

Montgomery’s algorithm [4] determines the quotient 

only depending on the least significant digit of 

operands and replaces the complicated division in 

conventional MM with a series of shifting modular 

additions to produce S = A × B × R−1 (mod N), 

where N is the k-bit modulus, R−1 is the inverse of R 

modulo N, and R = 2k mod N. As a result, it can be 

easily implemented into VLSI circuits to speed up the 

encryption/decryption process. However, the three-

operand addition in the iteration loop of 

Montgomery’s algorithm as shown in step 4 of Fig. 1 

requires long carry propagation for large operands in 

binary representation. To solve this problem, several 

approaches based on carry-save addition were 

proposed to achieve a significant speedup of 

Montgomery MM. Based on the representation of 

input and output operands, these approaches can be 

roughly divided into semi-carry-save (SCS) strategy 

and full carry-save (FCS) strategy. 

In the SCS strategy [5]–[8], the input and output 

operands (i.e., A, B, N, and S) of the Montgomery 

MM are represented in binary, but intermediate 

results of shifting modular additions are kept in the 

carry-save format to avoid the carry propagation. 

However, the format conversion from the carry-save 

format of the final modular product into its binary 

representation is needed at the end of each MM. This 

conversion can be accomplished by an extra carry 

propagation adder (CPA) [5] or reusing the carry-

save adder (CSA) architecture [8] iteratively. 

Contrary to the SCS strategy, the FCS strategy [9], 

[10] maintains the input and output operands A, B, 

and S in the carry-save format, denoted as (AS, AC), 

(BS, BC), and (SS, SC), respectively, to avoid the 

format conversion, leading to fewer clock cycles for 

completing a MM. Nevertheless, this strategy implies 

that the number of operands will increase and that 

more CSAs and registers for dealing with these 

operands are required. Therefore, the FCS-based 

Montgomery modular multipliers possibly have 

higher hardware complexity and longer critical path 

than the SCS-based multipliers.  

Kuang et al. [10] have proposed an energy-efficient 

FCS-based multiplier (denoted as FCS-MMM42 

multiplier) in which the superfluous operations of the 

four-to-two (two-level) CSA architecture are 

suppressed to reduce the energy dissipation and 

enhance the throughput. However, the FCS-MMM42 
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multiplier still suffers from the high area complexity 

and long critical path delay. Other techniques, such 

as parallelization, high-radix algorithm, and systolic 

array design [11]–[19], can be combined with the 

CSA architecture to further enhance the performance 

of Montgomery multipliers. However, these 

techniques probably cause a large increase in 

hardware complexity and power/energy dissipation 

[20], [21], which is undesirable for portable systems 

with constrained resources. 

Fig2: Montgomery modular multiplication  

Accordingly, this paper aims at enhancing the 

performance of CSA-based Montgomery multiplier 

while maintaining low hardware complexity. Instead 

of the FCS-based multiplier with two-level CSA 

architecture in [10], a new SCS-based Montgomery 

MM algorithm and its corresponding hardware 

architecture with only one-level CSA are proposed in 

this paper. The proposed algorithm and hardware 

architecture have the following several advantages 

and novel contributions over previous designs. First, 

the one-level CSA is utilized to perform not only the 

addition operations in the iteration loop of 

Montgomery’s algorithm but also B + N and the 

format conversion, leading to a very short critical 

path and lower hardware cost. However, a lot of extra 

clock cycles are required to carry out B + N and the 

format conversion via the one-level CSA 

architecture. Therefore, the benefit of short critical 

path will be lessened.  

To overcome the weakness, we then modify the one-

level CSA architecture to be able to perform one 

three-input carry-save addition or two serial two-

input carry-save additions, so that the extra clock 

cycles for B + N and the format conversion can be 

reduced by half. Finally, the condition and detection 

circuit, which are different with that of FCS-MMM42 

multiplier in [10], are developed to pre compute 

quotients and skip the unnecessary carry-save 

addition operations in the one-level configurable 

CSA (CCSA) architecture while keeping a short 

critical path delay. Therefore, the required clock 

cycles for completing one MM operation can be 

significantly reduced. As a result, the proposed 

Montgomery multiplier can obtain higher throughput 

and much smaller area-time product (ATP) than 

previous Montgomery multipliers. 

A. Modular Multiplication Algorithms 

a.   Montgomery Multiplication 

Fig.1shows the radix-2 version of the Montgomery 

MM algorithm (denoted as MM algorithm). As 

mentioned earlier, the Montgomery modular product 

S of A and B can be obtained as S = A × B × R−1 

(mod N), where R−1 is the inverse of R modulo N. 

That is, R × R−1 = 1 (mod N). Note that, the notation 

Xi in Fig 1: shows the ith bit of X in binary 

representation. In addition, the notation Xi: j 

indicates a segment of X from the ith bit to jth bit. 

Since the convergence range of S in MM algorithm is 

0 ≤ S < 2N, an additional operation S = S − N is 

required to remove the oversize residue if S ≥ N. To 

eliminate the final comparison and subtraction in step 

6 of Fig.1, Walter [22] changed the number of 

iterations and the value of R to k + 2 and 2k+2 mod 

N, respectively. Nevertheless, the long carry 

propagation for the very large operand addition still 

restricts the performance of MM algorithm. 

 

Fig2: SCS-based Montgomery multiplication 

algorithm 

 
Fig 3: SCS-MM-1 multiplier 
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Fig 4: SCS-MM-2 multiplier 

 

B .SCS-Based Montgomery Multiplication 

To avoid the long carry propagation, the intermediate 

result S of shifting modular addition can be kept in 

the carry-save representation (SS, SC), as shown in 

Fig.2 Note that the number of iterations in Fig .2 has 

been changed from k to k + 2 to remove the final 

comparison and subtraction [22]. However, the 

format conversion from the carry-save format of the 

final modular product into its binary format is 

needed, as shown in step 6 of Fig.2. Fig.3 shows the 

architecture of SCS-based MM algorithm proposed in 

[5] (denoted as SCS-MM-1 multiplier) composed of 

one two-level CSA architecture and one format 

converter, where the dashed line denotes a 1-bit 

signal. In [5], a 32-bit CPA with multiplexers and 

registers (denoted as CPA_FC), which adds two 32-

bit inputs and generates a 32-bit output at every clock 

cycle, was adopted for the format conversion. 

Therefore, the 32-bit CPA_FC will take 32 clock 

cycles to complete the format conversion of a 1024-

bit SCS-based Montgomery multiplication. The extra 

CPA_FC probably enlarges the area and the critical 

path of the SCS-MM-1 multiplier. 

The works in [6] and [7] pre computed D = B + N so 

that the computation of Ai × B + qi × N in step 4 of 

Fig.2 can be simplified into one selection operation. 

One of the operands 0, N, B, and D will be chosen if 

(Ai, qi) = (0, 0), (0, 1), (1, 0), and (1, 1), respectively. 

As a result, only one-level CSA architecture is 

required in this multiplier to perform the carry-save 

addition at the expense of one extra 4-to-1 

multiplexer and one additional register to store the 

operand D. However, they did not present an 

effective approach to remove the CPA_FC for format 

conversion and thus this kind of multiplier still 

suffers from the critical path of CPA_FC.  

On the other hand, Zhang et al. [8] reused the two-

level CSA architecture to perform the format 

conversion so that the CPA_FC can be removed. That 

is, S[k + 2] = SS[k + 2] + SC[k + 2] in step 6 of 

Fig.2is replaced with the repeated carry-save addition 

operation (SS[k + 2], SC[k + 2]) = SS[k + 2] + SC[k 

+ 2] until SC[k + 2] = 0. Note that the select signals 

of multiplexers M1 and M2 in Fig.4 generated by the 

control part are not shown in Fig.4 for the sake of 

simplicity. However, the extra clock cycles for 

format conversion are dependent on the longest carry 

propagation chain in SS[k+2]+SC[k+2] and about k/2 

clock cycles are required in the worst case because 

two-level CSA architecture is adopted in [8]. 

II. LITERATURE SURVEY 

An encryption method is presented with the novel 

property that publicly revealing an encryption key 

does not thereby reveal the corresponding decryption 

key. This has two important consequences: 1. 

Couriers or other secure means are not needed to 

transmit keys, since a message can be enciphered 

using an encryption key publicly revealed by the 

intended recipient. Only he can decipher the message, 

since only he knows the corresponding decryption 

key. 2. A message can be “signed” using a privately 

held decryption key. Anyone can verify this signature 

using the corresponding publicly revealed encryption 

key. Signatures cannot be forged, and a signer cannot 

later deny the validity of his signature.  

This has obvious applications in “electronic mail” 

and “electronic funds transfer” systems. A message is 

encrypted by representing it as a number M, raising 

M to a publicly specified power e, and then taking the 

remainder when the result is divided by the publicly 

specified product, n, of two large secret prime 

numbers p and q. Decryption is similar; only a 

different, secret, power d is used, where e • d ≡ 1 

(mod (p − 1) • (q − 1)). The security of the system 

rests in part on the difficulty of factoring the 

published divisor, n. Key Words and Phrases: digital 

signatures, public-key cryptosystems, privacy, 

authentication, security, factorization, prime number, 

electronic mail, message-passing, electronic funds 

transfer, and cryptography.  

Some algorithms [1], [2], [4], [5] require extensive 

modular arithmetic. We propose a representation of 

residue classes so as to speed modular multiplication 

without affecting the modular addition and 

subtraction algorithms. Other recent algorithms for 

modular arithmetic appear in [3], [6]. Fix N > 1. 
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Define an A'-residue to be a residue class modulo N. 

Select a radix R co prime to N (possibly the machine 

word size or a power thereof) such that R > N and 

such that computations modulo R are inexpensive to  

process. Let R~l and N' be integers satisfying 0 < R'x 

< N and 0 < N' < R and RRX - NN' = 1. For 0 < i < 

N, let /' represent the residue class containing iR~x 

mod N.This is a complete residue system. The 

rationale behind this selection is our ability to quickly 

compute TRl mod N from T if 0 < T < RN, as shown 

in Algorithm REDC: function REDC(r) m «- iT mod 

R)N' mod R [so 0 < m < R] t <-(T+ mN)/R if t > N 

then return t - N else return . To validate REDC, 

observe mN = TN'N = -Tmod R, so t is an integer. 

Also, tR = Tmod N so t = TR'X mod N. Thirdly, 0 < 

T + mN < RN + RN, so 0 < t < 2N. If R and N are 

large, then T + mN may exceed the largest double-

precision value.  

One can circumvent this by adjusting m so -R < m < 

0. Given two numbers x and y between 0 and N - 1 

inclusive, let z = REDC(xy). Then z = (xy)R~x mod 

N, so (xR-l)(yR~x) = zRx mod N. Also, 0 < z < N, so 

z is the product of x and y in this representation. 

Other algorithms for operating on N-residues in this 

representation can be derived from the algorithms 

normally used. The addition algorithm is unchanged, 

since xR~x + yR~x = zR~x mod N if and only if x + 

y = z mod N. Also unchanged are the algorithms for 

subtraction, negation, equality/inequality test, 

multiplication by an integer, and greatest common 

divisor with N. 

To convert an integer x to an ^-residue, compute xR 

mod N. Equivalently, compute REDC ((xmod N) 

(R2mod N)). Constants and inputs should be 

converted once, at the start of an algorithm. To 

convert an ^-residue to an integer, pad it with leading 

zeros and apply Algorithm REDC (thereby 

multiplying it by R'1 mod N). To invert an TV-

residue, observe (xR~x) ~l = zR'1 mod N if and only 

if z = R2x~l mod N. For modular division, observe 

(xR~l) (yR~x)~l = zR~x mod N if and only if z = 

«(REDCi»)-1 mod JV. The Jacobi symbol algorithm 

needs an extra negation if (R/N) = -1, since (xR~x/N) 

= (x/N)(R/N). Let M|N. A change of modulus from N 

(using R = R(N)) to M (using R = R(M)) proceeds 

normally if R(M) = R(N). If R(M) ¥= R(N), multiply 

each jV-residue by (R(N)/R(M))~x mod M during the 

conversion. 

 

III. EXISTING AND PROPOSED SYSTEM 

A.FCS-Based Montgomery Multiplication   

To avoid the format conversion, FCS-based 

Montgomery multiplication maintains A, B, and S in 

the carry save representations (AS, AC), (BS, BC), 

and (SS, SC), respectively. McIvor et al. [9] proposed 

two FCS based Montgomery multipliers, denoted as 

FCS-MM-1 and FCS-MM-2 multipliers, composed 

of one five-to two (three-level) and one four-to-two 

(two-level) CSA architecture, respectively. The 

algorithm and architecture of the FCS-MM-1 

multiplier are shown in Figs.5 and 6, respectively. 

The barrel register full adder (BRFA) in Fig. 6 

consists of two shift registers for storing AS and AC, 

a full adder (FA), and a flip-flop (FF). For more 

details about BRFA, please refer to [9] and [10].  

On the other hand, the FCS-MM-2 multiplier 

proposed in [9] adds up BS, BC, and N into DS and 

DC at the beginning of each MM. Therefore, the 

depth of the CSA tree can be reduced from three to 

two levels. Nevertheless, the FCS-MM-2 multiplier 

needs two extra 4-to-1 multiplexers addressed by Ai 

and qi and two more registers to store DS and DC to 

reduce one level of CSA tree. Therefore, the critical 

path of the FCS-MM-2 multiplier may be slightly 

reduced with a significant increase in hardware area 

when compared with the FCS-MM-1 multiplier. 

 
Table I. Analysis of area & delay of different designs  

 

Table I summarizes and roughly compares the area 

complexity and critical path delay of the above-

mentioned radix-2 Montgomery multipliers 

according to the normalized area and delay listed in 

Table II with respect to the TSMC 90-nm cell library 

information. In Table I, the notations AG and TG 

denote the area and delay of a cell G, respectively, 

and τ () denotes the critical path delay of circuit. Note 

that ASR in Table I denotes the area of a shift 

register, and we assume that ASR is approximate to 

the sum of AREG and AMUX2. 
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Table. II Normalized area and delay of the standard 

cells     In addition, the area and delay ratios of the 

SCS-MM-1 multiplier in Table I do not take that of 

CPA_FC into consideration because they are 

significantly dependent on the design of CPA_FC. 

Generally speaking, SCS-based multipliers have 

lower area complexity than FCS-based Montgomery 

multipliers. However, extra clock cycles for format 

conversion possibly lower the performance of SCS-

based multipliers. To further enhance the 

performance of the SCS-based multiplier, both the 

critical path delay and clock cycles for completing 

one multiplication must be reduced while 

maintaining the low hardware complexity. 

Fig 5: FCS-MM-1 Montgomery multiplication 

algorithm

Fig 6: FCS-MM-1 multiplier 

We propose a new SCS-based Montgomery MM 

algorithm to reduce the critical path delay of 

Montgomery multiplier. In addition, the drawback of 

more clock cycles for completing one multiplication 

is also improved while maintaining the advantages of 

short critical path delay and low hardware 

complexity.  

B. Critical Path Delay Reduction  

The critical path delay of SCS-based multiplier can 

be reduced by combining the advantages of FCS-

MM-2 and SCS-MM-2. That is, we can pre compute 

D = B + N and reuse the one-level CSA architecture 

to perform B+N and the format conversion. Fig. 7(a) 

and (b) shows the modified SCS-based Montgomery 

multiplication (MSCS-MM) algorithm and one 

possible hardware architecture, respectively. The 

Zero _D circuit in Fig.7 (b) is used to detect whether 

SC is equal to zero, which can be accomplished using 

one NOR operation. The Q_L circuit decides the qi 

value according to step 7 of Fig.7 (a).   The carry 

propagation addition operations of B + N and the 

format conversion are performed by the one-level 

CSA architecture of the MSCS-MM multiplier 

through repeatedly executing the carry-save addition 

(SS, SC) = SS + SC + 0 until SC = 0. In addition, we 

also pre compute Ai and Qi in iteration i−1 (this will 

be explained more clearly in Section III-C) so that 

they can be Used to immediately select the desired 

input operand from 0, N, B, and D through the 

multiplexer M3 in iteration i. Therefore, the critical 

path delay of the MSCS-MM multiplier can be 

reduced into TMUX4 + TFA. However, in addition 

to performing the three-input carry-save additions 

[i.e., step 12 of Fig.7(a)] k + 2 times, many extra 

clock cycles are required to perform B + N and the 

format conversion via the one-level CSA architecture 

because they must be performed once in every MM. 

Furthermore, the extra clock cycles for performing 

B+N and the format conversion through repeatedly 

executing the carry-save addition (SS, SC) = SS +SC 

+0 are dependent on the longest carry propagation 

chain in SS + SC. If SS = 111…1112 and SC = 

000…0012, the one-level CSA architecture needs k 

clock cycles to complete SS + SC. That is, ∼3k clock 

cycles in the worst case are required for completing 

one MM. Thus, it is critical to reduce the required 

clock cycles of the MSCS-MM multiplier. 
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Fig 7(a) Modified SCS-based Montgomery 

multiplication algorithm. (b)MSCS-MM multiplier 

 
Fig 8(a)  Conventional FA circuit. (b) Proposed CFA 

Circuit. (c) Two serial HAs. (d) Simplified 

multiplexer SM3 

C. Proposed Algorithm and Hardware Architecture 

On the bases of critical path delay reduction, clock 

cycle number reduction, and quotient pre 

computation mentioned above, a new SCS-based 

Montgomery MM algorithm (i.e., SCS-MM-New 

algorithm shown in Fig. 10) using one-level CCSA 

architecture is proposed to significantly reduce the 

required clock cycles for completing one MM. As 

shown in SCS-MM-New algorithm, steps 1–5 for 

producing Bˆ and Dˆ are first performed. Note that 

because qi+1 and qi+2 must be generated in the ith 

iteration, the iterative index i of Montgomery MM 

will start from −1 instead of 0 and the corresponding 

initial values of qˆ and Aˆ must be set to 0. 

Furthermore, the original for loop is  replaced with the 

while loop in SCS-MM-New algorithm to skip some 

unnecessary iterations when skipi+1 = 1. In addition, 

the ending number of iterations in SCS-MM-New 

algorithm is changed to k + 4 instead of k + 1 in Fig. 

7(a). 

This is because B is replaced with Bˆ and thus three 

extra iterations for computing division by two are 

necessary to ensure the correctness of Montgomery 

MM. In the while loop, steps 8–12 will be performed 

in the proposed one-level CCSA architecture with 

one 4-to-1 multiplexer. The computations of qi+1, 

qi+2, and skipi+1 in step 13 and the selections of Aˆ, 

qˆ, and i in steps 14–20 can be carried out in parallel 

with steps 8–12. Note that the right-shift operations 

of steps 12 and 15 will be delayed to next clock cycle 

to reduce the critical path delay of corresponding 

hardware architecture. The hardware architecture of 

SCS-MM-New algorithm, denoted as SCS-MM-New 

multiplier, are shown in Fig. 11, which consists of 

one one-level CCSA architecture, two 4-to-1 

multiplexers (i.e., M1 and M2), one simplified 

multiplier SM3, one skip detector Skip _D, one zero 

detector Zero _D, and six registers. Skip_D is 

developed to generate skipi+1, qˆ, and Aˆ in the ith 

iteration. Both M4 and M5 in Fig.11 are 3-bit 2-to-1 

multiplexers and they are much smaller than k-bit 

multiplexers M1, M2, and SM3. In addition, the area 

of Skip_D is negligible when compared with that of 

the k-bit one-level CCSA architecture. Similar to Fig. 

4, the select signals of multiplexers M1 and M2 in 

Fig. 11 are generated by the control part, which are 

not depicted for the sake of simplicity. 

At the beginning of Montgomery multiplication, the 

FFs stored skipi+1, qˆ, Aˆ are first reset to 0 as shown 
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in step 1 of SCS-MM-New algorithm so that Dˆ = Bˆ 

+Nˆ can be computed via the one-level CCSA 

architecture. When performing the while loop, the 

skip detector Skip_D shown in Fig. 12 is used to  

produce skipi+1, qˆ, and Aˆ. The Skip_D is 

composed of four XOR gates, three AND neither 

gates, one NOR gate, and two 2-to-1 multiplexers. It 

first generates the qi+1, qi+2, and skipi+1 signal in 

the ith iteration according to (5), (7), and (8), 

respectively, and then selects the correct qˆ and Aˆ 

according to skipi+1.At the end of The ith iteration, 

qˆ, Aˆ, and skipi+1 must be stored to FFs. In the next 

clock cycle of the ith iteration, SM3 outputs a proper 

x according to qˆ and Aˆ generated in the ith iteration 

as shown in steps 8–11, and M1 and M2 output the 

correct SC and SS according to skipi+1 generated in 

the ith iteration.  If skipi+1 = 0, SC 1 and SS1 are 

selected. Otherwise, SC 2 and SS 2 are selected. That 

is, the right-shift 1-bit operations in steps 12 and 15 

of SCS-MM-New algorithm are performed together 

in the next clock cycle of iteration i. In addition, M4 

and M5 also select and output the correct SC[i] 2:0 

and SS[i] 2:0 according to skipi+1 generated in the 

ith iteration. Note that SC[i] 2:0 and SS[i] 2:0 can 

also be obtained from M1 and M2 but a longer delay 

is required because they are 4-to-1 multiplexers. 

After the while loop in steps 7–21 is completed, qˆ 

and Aˆ stored in FFs are reset to 0. Then, the format 

conversion in steps 23 and 24 can be performed by 

the SCS-MM-New multiplier similar to the 

computation of Dˆ = Bˆ + Nˆ in steps 3 and 4. 

Finally, SS [k + 5] in binary format is outputted when 

SC [k + 5] is equal to 0. 

 
Fig 10.SCS-MM New algorithm 

 
Fig 11.SCS-MM New multiplier 

 

IV. SIMULATION TOOLS 

Schematic diagrams of SCS based Montgomery 

modular multiplication: 

 

Fig 12 Block diagram of SCS –MM 

 

Fig 13 Technology schematic diagram of SCS-MM 

 

Fig 14 schematic diagram of SCS-MM 
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Fig 15 Simulation result of SCS based Montgomery 

modular multiplication 

V. CONCLUSION 

FCS-based multipliers maintain the input and output 

operands of the Montgomery MM in the carry-save 

format to escape from the format conversion, leading 

to fewer clock cycles but larger area than SCS-based 

multiplier. To enhance the performance of 

Montgomery MM while maintaining the low 

hardware complexity, this paper has modified the 

SCS-based Montgomery multiplication algorithm and 

proposed a low-cost and high-performance 

Montgomery modular multiplier. The proposed 

multiplier used one-level CCSA architecture and 

skipped the unnecessary carry-save addition 

operations to largely reduce the critical path delay 

and required clock cycles for completing one MM 

operation. Experimental results showed that the 

proposed approaches are indeed capable of enhancing 

the performance of radix-2 CSA-based Montgomery 

multiplier while maintaining low hardware 

complexity. 
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