
© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144799 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 56

VLSI Implementation of High Performance

Montgomery Modular Multiplication for Crypto

Graphical Application

Baana Lakshmi Narayanamma1, B.Aruna
2

M.Tech. PG Scholar, Gouthami Institute of Technology & Management for Women, Proddatur

Assistant Professor, Gouthami Institute of Technology & Management for Women, Proddatur

Abstract-This paper proposes a simple and efficient

Montgomery multiplication algorithm such that the

low-cost and high-performance Montgomery modular

multiplier can be implemented accordingly. Full -adder

or two serial half-adders, is proposed to reduce the

extra clock cycles for operand pre computation and

format conversion by half. In addition, a mechanism

that can detect and skip the unnecessary carry-save

addition operations in the one-level CCSA

architecture while maintaining the short critical path

delay is developed. As a result, the extra clock cycles

for operand pre computation and format conversion

can be hidden and high throughput can be obtained.

Experimental results show that the proposed

Montgomery modular multiplier can achieve higher

performance and significant area–time product

Improvement when compared with previous design.

I. INTRODUCTION

The IN MANY public-key cryptosystems [1]–[3],

modular multiplication (MM) with large integers is

the most critical and time-consuming operation.

Therefore, numerous algorithms and hardware

implementation have been presented to carry out the

MM more quickly, and Montgomery’s algorithm is

one of the most well-known MM algorithms.

Montgomery’s algorithm [4] determines the quotient

only depending on the least significant digit of

operands and replaces the complicated division in

conventional MM with a series of shifting modular

additions to produce S = A × B × R−1 (mod N),

where N is the k-bit modulus, R−1 is the inverse of R

modulo N, and R = 2k mod N. As a result, it can be

easily implemented into VLSI circuits to speed up the

encryption/decryption process. However, the three-

operand addition in the iteration loop of

Montgomery’s algorithm as shown in step 4 of Fig. 1

requires long carry propagation for large operands in

binary representation. To solve this problem, several

approaches based on carry-save addition were

proposed to achieve a significant speedup of

Montgomery MM. Based on the representation of

input and output operands, these approaches can be

roughly divided into semi-carry-save (SCS) strategy

and full carry-save (FCS) strategy.

In the SCS strategy [5]–[8], the input and output

operands (i.e., A, B, N, and S) of the Montgomery

MM are represented in binary, but intermediate

results of shifting modular additions are kept in the

carry-save format to avoid the carry propagation.

However, the format conversion from the carry-save

format of the final modular product into its binary

representation is needed at the end of each MM. This

conversion can be accomplished by an extra carry

propagation adder (CPA) [5] or reusing the carry-

save adder (CSA) architecture [8] iteratively.

Contrary to the SCS strategy, the FCS strategy [9],

[10] maintains the input and output operands A, B,

and S in the carry-save format, denoted as (AS, AC),

(BS, BC), and (SS, SC), respectively, to avoid the

format conversion, leading to fewer clock cycles for

completing a MM. Nevertheless, this strategy implies

that the number of operands will increase and that

more CSAs and registers for dealing with these

operands are required. Therefore, the FCS-based

Montgomery modular multipliers possibly have

higher hardware complexity and longer critical path

than the SCS-based multipliers.

Kuang et al. [10] have proposed an energy-efficient

FCS-based multiplier (denoted as FCS-MMM42

multiplier) in which the superfluous operations of the

four-to-two (two-level) CSA architecture are

suppressed to reduce the energy dissipation and

enhance the throughput. However, the FCS-MMM42

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144799 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 57

multiplier still suffers from the high area complexity

and long critical path delay. Other techniques, such

as parallelization, high-radix algorithm, and systolic

array design [11]–[19], can be combined with the

CSA architecture to further enhance the performance

of Montgomery multipliers. However, these

techniques probably cause a large increase in

hardware complexity and power/energy dissipation

[20], [21], which is undesirable for portable systems

with constrained resources.

Fig2: Montgomery modular multiplication

Accordingly, this paper aims at enhancing the

performance of CSA-based Montgomery multiplier

while maintaining low hardware complexity. Instead

of the FCS-based multiplier with two-level CSA

architecture in [10], a new SCS-based Montgomery

MM algorithm and its corresponding hardware

architecture with only one-level CSA are proposed in

this paper. The proposed algorithm and hardware

architecture have the following several advantages

and novel contributions over previous designs. First,

the one-level CSA is utilized to perform not only the

addition operations in the iteration loop of

Montgomery’s algorithm but also B + N and the

format conversion, leading to a very short critical

path and lower hardware cost. However, a lot of extra

clock cycles are required to carry out B + N and the

format conversion via the one-level CSA

architecture. Therefore, the benefit of short critical

path will be lessened.

To overcome the weakness, we then modify the one-

level CSA architecture to be able to perform one

three-input carry-save addition or two serial two-

input carry-save additions, so that the extra clock

cycles for B + N and the format conversion can be

reduced by half. Finally, the condition and detection

circuit, which are different with that of FCS-MMM42

multiplier in [10], are developed to pre compute

quotients and skip the unnecessary carry-save

addition operations in the one-level configurable

CSA (CCSA) architecture while keeping a short

critical path delay. Therefore, the required clock

cycles for completing one MM operation can be

significantly reduced. As a result, the proposed

Montgomery multiplier can obtain higher throughput

and much smaller area-time product (ATP) than

previous Montgomery multipliers.

A. Modular Multiplication Algorithms

a. Montgomery Multiplication

Fig.1shows the radix-2 version of the Montgomery

MM algorithm (denoted as MM algorithm). As

mentioned earlier, the Montgomery modular product

S of A and B can be obtained as S = A × B × R−1

(mod N), where R−1 is the inverse of R modulo N.

That is, R × R−1 = 1 (mod N). Note that, the notation

Xi in Fig 1: shows the ith bit of X in binary

representation. In addition, the notation Xi: j

indicates a segment of X from the ith bit to jth bit.

Since the convergence range of S in MM algorithm is

0 ≤ S < 2N, an additional operation S = S − N is

required to remove the oversize residue if S ≥ N. To

eliminate the final comparison and subtraction in step

6 of Fig.1, Walter [22] changed the number of

iterations and the value of R to k + 2 and 2k+2 mod

N, respectively. Nevertheless, the long carry

propagation for the very large operand addition still

restricts the performance of MM algorithm.

Fig2: SCS-based Montgomery multiplication

algorithm

Fig 3: SCS-MM-1 multiplier

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144799 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 58

Fig 4: SCS-MM-2 multiplier

B .SCS-Based Montgomery Multiplication

To avoid the long carry propagation, the intermediate

result S of shifting modular addition can be kept in

the carry-save representation (SS, SC), as shown in

Fig.2 Note that the number of iterations in Fig .2 has

been changed from k to k + 2 to remove the final

comparison and subtraction [22]. However, the

format conversion from the carry-save format of the

final modular product into its binary format is

needed, as shown in step 6 of Fig.2. Fig.3 shows the

architecture of SCS-based MM algorithm proposed in

[5] (denoted as SCS-MM-1 multiplier) composed of

one two-level CSA architecture and one format

converter, where the dashed line denotes a 1-bit

signal. In [5], a 32-bit CPA with multiplexers and

registers (denoted as CPA_FC), which adds two 32-

bit inputs and generates a 32-bit output at every clock

cycle, was adopted for the format conversion.

Therefore, the 32-bit CPA_FC will take 32 clock

cycles to complete the format conversion of a 1024-

bit SCS-based Montgomery multiplication. The extra

CPA_FC probably enlarges the area and the critical

path of the SCS-MM-1 multiplier.

The works in [6] and [7] pre computed D = B + N so

that the computation of Ai × B + qi × N in step 4 of

Fig.2 can be simplified into one selection operation.

One of the operands 0, N, B, and D will be chosen if

(Ai, qi) = (0, 0), (0, 1), (1, 0), and (1, 1), respectively.

As a result, only one-level CSA architecture is

required in this multiplier to perform the carry-save

addition at the expense of one extra 4-to-1

multiplexer and one additional register to store the

operand D. However, they did not present an

effective approach to remove the CPA_FC for format

conversion and thus this kind of multiplier still

suffers from the critical path of CPA_FC.

On the other hand, Zhang et al. [8] reused the two-

level CSA architecture to perform the format

conversion so that the CPA_FC can be removed. That

is, S[k + 2] = SS[k + 2] + SC[k + 2] in step 6 of

Fig.2is replaced with the repeated carry-save addition

operation (SS[k + 2], SC[k + 2]) = SS[k + 2] + SC[k

+ 2] until SC[k + 2] = 0. Note that the select signals

of multiplexers M1 and M2 in Fig.4 generated by the

control part are not shown in Fig.4 for the sake of

simplicity. However, the extra clock cycles for

format conversion are dependent on the longest carry

propagation chain in SS[k+2]+SC[k+2] and about k/2

clock cycles are required in the worst case because

two-level CSA architecture is adopted in [8].

II. LITERATURE SURVEY

An encryption method is presented with the novel

property that publicly revealing an encryption key

does not thereby reveal the corresponding decryption

key. This has two important consequences: 1.

Couriers or other secure means are not needed to

transmit keys, since a message can be enciphered

using an encryption key publicly revealed by the

intended recipient. Only he can decipher the message,

since only he knows the corresponding decryption

key. 2. A message can be “signed” using a privately

held decryption key. Anyone can verify this signature

using the corresponding publicly revealed encryption

key. Signatures cannot be forged, and a signer cannot

later deny the validity of his signature.

This has obvious applications in “electronic mail”

and “electronic funds transfer” systems. A message is

encrypted by representing it as a number M, raising

M to a publicly specified power e, and then taking the

remainder when the result is divided by the publicly

specified product, n, of two large secret prime

numbers p and q. Decryption is similar; only a

different, secret, power d is used, where e • d ≡ 1

(mod (p − 1) • (q − 1)). The security of the system

rests in part on the difficulty of factoring the

published divisor, n. Key Words and Phrases: digital

signatures, public-key cryptosystems, privacy,

authentication, security, factorization, prime number,

electronic mail, message-passing, electronic funds

transfer, and cryptography.

Some algorithms [1], [2], [4], [5] require extensive

modular arithmetic. We propose a representation of

residue classes so as to speed modular multiplication

without affecting the modular addition and

subtraction algorithms. Other recent algorithms for

modular arithmetic appear in [3], [6]. Fix N > 1.

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144799 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 59

Define an A'-residue to be a residue class modulo N.

Select a radix R co prime to N (possibly the machine

word size or a power thereof) such that R > N and

such that computations modulo R are inexpensive to

process. Let R~l and N' be integers satisfying 0 < R'x

< N and 0 < N' < R and RRX - NN' = 1. For 0 < i <

N, let /' represent the residue class containing iR~x

mod N.This is a complete residue system. The

rationale behind this selection is our ability to quickly

compute TRl mod N from T if 0 < T < RN, as shown

in Algorithm REDC: function REDC(r) m «- iT mod

R)N' mod R [so 0 < m < R] t <-(T+ mN)/R if t > N

then return t - N else return . To validate REDC,

observe mN = TN'N = -Tmod R, so t is an integer.

Also, tR = Tmod N so t = TR'X mod N. Thirdly, 0 <

T + mN < RN + RN, so 0 < t < 2N. If R and N are

large, then T + mN may exceed the largest double-

precision value.

One can circumvent this by adjusting m so -R < m <

0. Given two numbers x and y between 0 and N - 1

inclusive, let z = REDC(xy). Then z = (xy)R~x mod

N, so (xR-l)(yR~x) = zRx mod N. Also, 0 < z < N, so

z is the product of x and y in this representation.

Other algorithms for operating on N-residues in this

representation can be derived from the algorithms

normally used. The addition algorithm is unchanged,

since xR~x + yR~x = zR~x mod N if and only if x +

y = z mod N. Also unchanged are the algorithms for

subtraction, negation, equality/inequality test,

multiplication by an integer, and greatest common

divisor with N.

To convert an integer x to an ^-residue, compute xR

mod N. Equivalently, compute REDC ((xmod N)

(R2mod N)). Constants and inputs should be

converted once, at the start of an algorithm. To

convert an ^-residue to an integer, pad it with leading

zeros and apply Algorithm REDC (thereby

multiplying it by R'1 mod N). To invert an TV-

residue, observe (xR~x) ~l = zR'1 mod N if and only

if z = R2x~l mod N. For modular division, observe

(xR~l) (yR~x)~l = zR~x mod N if and only if z =

«(REDCi»)-1 mod JV. The Jacobi symbol algorithm

needs an extra negation if (R/N) = -1, since (xR~x/N)

= (x/N)(R/N). Let M|N. A change of modulus from N

(using R = R(N)) to M (using R = R(M)) proceeds

normally if R(M) = R(N). If R(M) ¥= R(N), multiply

each jV-residue by (R(N)/R(M))~x mod M during the

conversion.

III. EXISTING AND PROPOSED SYSTEM

A.FCS-Based Montgomery Multiplication

To avoid the format conversion, FCS-based

Montgomery multiplication maintains A, B, and S in

the carry save representations (AS, AC), (BS, BC),

and (SS, SC), respectively. McIvor et al. [9] proposed

two FCS based Montgomery multipliers, denoted as

FCS-MM-1 and FCS-MM-2 multipliers, composed

of one five-to two (three-level) and one four-to-two

(two-level) CSA architecture, respectively. The

algorithm and architecture of the FCS-MM-1

multiplier are shown in Figs.5 and 6, respectively.

The barrel register full adder (BRFA) in Fig. 6

consists of two shift registers for storing AS and AC,

a full adder (FA), and a flip-flop (FF). For more

details about BRFA, please refer to [9] and [10].

On the other hand, the FCS-MM-2 multiplier

proposed in [9] adds up BS, BC, and N into DS and

DC at the beginning of each MM. Therefore, the

depth of the CSA tree can be reduced from three to

two levels. Nevertheless, the FCS-MM-2 multiplier

needs two extra 4-to-1 multiplexers addressed by Ai

and qi and two more registers to store DS and DC to

reduce one level of CSA tree. Therefore, the critical

path of the FCS-MM-2 multiplier may be slightly

reduced with a significant increase in hardware area

when compared with the FCS-MM-1 multiplier.

Table I. Analysis of area & delay of different designs

Table I summarizes and roughly compares the area

complexity and critical path delay of the above-

mentioned radix-2 Montgomery multipliers

according to the normalized area and delay listed in

Table II with respect to the TSMC 90-nm cell library

information. In Table I, the notations AG and TG

denote the area and delay of a cell G, respectively,

and τ () denotes the critical path delay of circuit. Note

that ASR in Table I denotes the area of a shift

register, and we assume that ASR is approximate to

the sum of AREG and AMUX2.

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144799 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 60

Table. II Normalized area and delay of the standard

cells In addition, the area and delay ratios of the

SCS-MM-1 multiplier in Table I do not take that of

CPA_FC into consideration because they are

significantly dependent on the design of CPA_FC.

Generally speaking, SCS-based multipliers have

lower area complexity than FCS-based Montgomery

multipliers. However, extra clock cycles for format

conversion possibly lower the performance of SCS-

based multipliers. To further enhance the

performance of the SCS-based multiplier, both the

critical path delay and clock cycles for completing

one multiplication must be reduced while

maintaining the low hardware complexity.

Fig 5: FCS-MM-1 Montgomery multiplication

algorithm

Fig 6: FCS-MM-1 multiplier

We propose a new SCS-based Montgomery MM

algorithm to reduce the critical path delay of

Montgomery multiplier. In addition, the drawback of

more clock cycles for completing one multiplication

is also improved while maintaining the advantages of

short critical path delay and low hardware

complexity.

B. Critical Path Delay Reduction

The critical path delay of SCS-based multiplier can

be reduced by combining the advantages of FCS-

MM-2 and SCS-MM-2. That is, we can pre compute

D = B + N and reuse the one-level CSA architecture

to perform B+N and the format conversion. Fig. 7(a)

and (b) shows the modified SCS-based Montgomery

multiplication (MSCS-MM) algorithm and one

possible hardware architecture, respectively. The

Zero _D circuit in Fig.7 (b) is used to detect whether

SC is equal to zero, which can be accomplished using

one NOR operation. The Q_L circuit decides the qi

value according to step 7 of Fig.7 (a). The carry

propagation addition operations of B + N and the

format conversion are performed by the one-level

CSA architecture of the MSCS-MM multiplier

through repeatedly executing the carry-save addition

(SS, SC) = SS + SC + 0 until SC = 0. In addition, we

also pre compute Ai and Qi in iteration i−1 (this will

be explained more clearly in Section III-C) so that

they can be Used to immediately select the desired

input operand from 0, N, B, and D through the

multiplexer M3 in iteration i. Therefore, the critical

path delay of the MSCS-MM multiplier can be

reduced into TMUX4 + TFA. However, in addition

to performing the three-input carry-save additions

[i.e., step 12 of Fig.7(a)] k + 2 times, many extra

clock cycles are required to perform B + N and the

format conversion via the one-level CSA architecture

because they must be performed once in every MM.

Furthermore, the extra clock cycles for performing

B+N and the format conversion through repeatedly

executing the carry-save addition (SS, SC) = SS +SC

+0 are dependent on the longest carry propagation

chain in SS + SC. If SS = 111…1112 and SC =

000…0012, the one-level CSA architecture needs k

clock cycles to complete SS + SC. That is, ∼3k clock

cycles in the worst case are required for completing

one MM. Thus, it is critical to reduce the required

clock cycles of the MSCS-MM multiplier.

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144799 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 61

Fig 7(a) Modified SCS-based Montgomery

multiplication algorithm. (b)MSCS-MM multiplier

Fig 8(a) Conventional FA circuit. (b) Proposed CFA

Circuit. (c) Two serial HAs. (d) Simplified

multiplexer SM3

C. Proposed Algorithm and Hardware Architecture

On the bases of critical path delay reduction, clock

cycle number reduction, and quotient pre

computation mentioned above, a new SCS-based

Montgomery MM algorithm (i.e., SCS-MM-New

algorithm shown in Fig. 10) using one-level CCSA

architecture is proposed to significantly reduce the

required clock cycles for completing one MM. As

shown in SCS-MM-New algorithm, steps 1–5 for

producing Bˆ and Dˆ are first performed. Note that

because qi+1 and qi+2 must be generated in the ith

iteration, the iterative index i of Montgomery MM

will start from −1 instead of 0 and the corresponding

initial values of qˆ and Aˆ must be set to 0.

Furthermore, the original for loop is replaced with the

while loop in SCS-MM-New algorithm to skip some

unnecessary iterations when skipi+1 = 1. In addition,

the ending number of iterations in SCS-MM-New

algorithm is changed to k + 4 instead of k + 1 in Fig.

7(a).

This is because B is replaced with Bˆ and thus three

extra iterations for computing division by two are

necessary to ensure the correctness of Montgomery

MM. In the while loop, steps 8–12 will be performed

in the proposed one-level CCSA architecture with

one 4-to-1 multiplexer. The computations of qi+1,

qi+2, and skipi+1 in step 13 and the selections of Aˆ,

qˆ, and i in steps 14–20 can be carried out in parallel

with steps 8–12. Note that the right-shift operations

of steps 12 and 15 will be delayed to next clock cycle

to reduce the critical path delay of corresponding

hardware architecture. The hardware architecture of

SCS-MM-New algorithm, denoted as SCS-MM-New

multiplier, are shown in Fig. 11, which consists of

one one-level CCSA architecture, two 4-to-1

multiplexers (i.e., M1 and M2), one simplified

multiplier SM3, one skip detector Skip _D, one zero

detector Zero _D, and six registers. Skip_D is

developed to generate skipi+1, qˆ, and Aˆ in the ith

iteration. Both M4 and M5 in Fig.11 are 3-bit 2-to-1

multiplexers and they are much smaller than k-bit

multiplexers M1, M2, and SM3. In addition, the area

of Skip_D is negligible when compared with that of

the k-bit one-level CCSA architecture. Similar to Fig.

4, the select signals of multiplexers M1 and M2 in

Fig. 11 are generated by the control part, which are

not depicted for the sake of simplicity.

At the beginning of Montgomery multiplication, the

FFs stored skipi+1, qˆ, Aˆ are first reset to 0 as shown

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144799 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 62

in step 1 of SCS-MM-New algorithm so that Dˆ = Bˆ

+Nˆ can be computed via the one-level CCSA

architecture. When performing the while loop, the

skip detector Skip_D shown in Fig. 12 is used to

produce skipi+1, qˆ, and Aˆ. The Skip_D is

composed of four XOR gates, three AND neither

gates, one NOR gate, and two 2-to-1 multiplexers. It

first generates the qi+1, qi+2, and skipi+1 signal in

the ith iteration according to (5), (7), and (8),

respectively, and then selects the correct qˆ and Aˆ

according to skipi+1.At the end of The ith iteration,

qˆ, Aˆ, and skipi+1 must be stored to FFs. In the next

clock cycle of the ith iteration, SM3 outputs a proper

x according to qˆ and Aˆ generated in the ith iteration

as shown in steps 8–11, and M1 and M2 output the

correct SC and SS according to skipi+1 generated in

the ith iteration. If skipi+1 = 0, SC 1 and SS1 are

selected. Otherwise, SC 2 and SS 2 are selected. That

is, the right-shift 1-bit operations in steps 12 and 15

of SCS-MM-New algorithm are performed together

in the next clock cycle of iteration i. In addition, M4

and M5 also select and output the correct SC[i] 2:0

and SS[i] 2:0 according to skipi+1 generated in the

ith iteration. Note that SC[i] 2:0 and SS[i] 2:0 can

also be obtained from M1 and M2 but a longer delay

is required because they are 4-to-1 multiplexers.

After the while loop in steps 7–21 is completed, qˆ

and Aˆ stored in FFs are reset to 0. Then, the format

conversion in steps 23 and 24 can be performed by

the SCS-MM-New multiplier similar to the

computation of Dˆ = Bˆ + Nˆ in steps 3 and 4.

Finally, SS [k + 5] in binary format is outputted when

SC [k + 5] is equal to 0.

Fig 10.SCS-MM New algorithm

Fig 11.SCS-MM New multiplier

IV. SIMULATION TOOLS

Schematic diagrams of SCS based Montgomery

modular multiplication:

Fig 12 Block diagram of SCS –MM

Fig 13 Technology schematic diagram of SCS-MM

Fig 14 schematic diagram of SCS-MM

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144799 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 63

Fig 15 Simulation result of SCS based Montgomery

modular multiplication

V. CONCLUSION

FCS-based multipliers maintain the input and output

operands of the Montgomery MM in the carry-save

format to escape from the format conversion, leading

to fewer clock cycles but larger area than SCS-based

multiplier. To enhance the performance of

Montgomery MM while maintaining the low

hardware complexity, this paper has modified the

SCS-based Montgomery multiplication algorithm and

proposed a low-cost and high-performance

Montgomery modular multiplier. The proposed

multiplier used one-level CCSA architecture and

skipped the unnecessary carry-save addition

operations to largely reduce the critical path delay

and required clock cycles for completing one MM

operation. Experimental results showed that the

proposed approaches are indeed capable of enhancing

the performance of radix-2 CSA-based Montgomery

multiplier while maintaining low hardware

complexity.

REFERENCE

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A

method for obtaining digital signatures and

public-key cryptosystems,” Commun. ACM, vol.

21, no. 2, pp. 120–126, Feb. 1978.

[2] V. S. Miller, “Use of elliptic curves in

cryptography,” in Advances in Cryptology.

Berlin, Germany: Springer-Verlag, 1986, pp.

417–426.

[3] N. Koblitz, “Elliptic curve cryptosystems,”

Math. Comput., vol. 48, no. 177, pp. 203–209,

1987.

[4] P. L. Montgomery, “Modular multiplication

without trial division,” Math. Comput., vol. 44,

no. 170, pp. 519–521, Apr. 1985.

[5] Y. S. Kim, W. S. Kang, and J. R. Choi,

“Asynchronous implementation of 1024-bit

modular processor for RSA cryptosystem,” in

Proc. 2nd IEEE Asia-Pacific Conf. ASIC, Aug.

2000, pp. 187–190.

[6] V. Bunimov, M. Schimmler, and B. Tolg, “A

complexity-effective version of Montgomery’s

algorihm,” in Proc. Workshop Complex.

Effective Designs, May 2002.

[7] H. Zhengbing, R. M. Al Shboul, and V. P.

Shirochin, “An efficient architecture of 1024-bits

cryptoprocessor for RSA cryptosystem based on

modified Montgomery’s algorithm,” in Proc. 4th

IEEE Int. Workshop Intell. Data Acquisition

Adv. Comput. Syst., Sep. 2007, pp. 643–646.

[8] Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang,

“An efficient CSA architecture for Montgomery

modular multiplication,” Microprocessors

Microsyst., vol. 31, no. 7, pp. 456–459, Nov.

2007.

[9] C. McIvor, M. McLoone, and J. V. McCanny,

“Modified Montgomery modular multiplication

and RSA exponentiation techniques,” IEE Proc.-

Comput. Digit. Techn., vol. 151, no. 6, pp. 402–

408, Nov. 2004.

[10] S.-R. Kuang, J.-P. Wang, K.-C. Chang, and H.-

W. Hsu, “Energy-efficient high-throughput

Montgomery modular multipliers for RSA

cryptosystems,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 21, no. 11, pp. 1999–

2009, Nov. 2013.

[11] J. C. Neto, A. F. Tenca, and W. V. Ruggiero, “A

parallel k-partition method to perform

Montgomery multiplication,” in Proc. IEEE Int.

Conf. Appl.-Specific Syst., Archit., Processors,

Sep. 2011, pp. 251–254.

[12] J. Han, S. Wang, W. Huang, Z. Yu, and X. Zeng,

“Parallelization of radix-2 Montgomery

multiplication on multicore platform,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 21, no. 12, pp. 2325–2330, Dec. 2013.

[13] P. Amberg, N. Pinckney, and D. M. Harris,

“Parallel high-radix Montgomery multipliers,” in

Proc. 42nd Asilomar Conf. Signals, Syst.,

Comput., Oct. 2008, pp. 772–776.

[14] G. Sassaw, C. J. Jimenez, and M. Valencia,

“High radix implementation of Montgomery

multipliers with CSA,” in Proc. Int. Conf.

Microelectron., Dec. 2010, pp. 315–318.

[15] A. Miyamoto, N. Homma, T. Aoki, and A.

Satoh, “Systematic design of RSA processors

© September 2017 | IJIRT | Volume 4 Issue 4 | ISSN: 2349-6002

IJIRT 144799 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 64

based on high-radix Montgomery multipliers,”

IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 19, no. 7, pp. 1136–1146, Jul. 2011.

[16] S.-H. Wang, W.-C. Lin, J.-H. Ye, and M.-D.

Shieh, “Fast scalable radix-4 Montgomery

modular multiplier,” in Proc. IEEE Int. Symp.

Circuits Syst., May 2012, pp. 3049–3052.

[17] J.-H. Hong and C.-W. Wu, “Cellular-array

modular multiplier for fast RSA public-key

cryptosystem based on modified Booth’s

algorithm,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 11, no. 3, pp. 474–484,

Jun. 2003

