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[-Convergence of Ultra filters

Rohini Jamwal, Dalip Singh Jamwal

Abstract- In this paper, we have extended the idea of
I-convergence of filters to the I-convergence of ultra-
filters containing that filter and studied its various
properties.

I. INTRODUCTION

The concept of convergence of a sequence of real
numbers has been extended to statistical convergence
independently by H. Fast [4] and I. J. Schoenberg
[24]. Kostyrko et. al in [10] and [11] generalized the
notion of statistical convergence and introduced the
concept of [-convergence of real sequences which is
based on the structure of the ideal | of subsets of the
set of natural numbers. Mursaleen et. al [16] defined
and studied the notion of ideal convergence in
random 2-normed spaces and construct some
interesting examples. Several works on
I-convergence and statistical convergence have been
done in [1], [3], [6]. [7], [8]. [], [10], [11]. [12],
[15], [16], [17], [18], [19], [23].

The idea of I-convergence has been extended from
real number space to metric space [10] and to a
normed linear space [22] in recent works. Later the
idea of I-convergence was extended to an arbitrary
topological space by B. K. Lahiri and P. Das in [13].
It was observed that the basic properties remained
preserved in topological spaces. Lahiri and Das [14]
introduced the idea of I—convergence of nets in
topological spaces and examined how far it affects
the basic properties.

Taking the idea of [14], Jamwal et. al introduced the
idea of I-convergence of filters in [6] and studied its
various properties. Jamwal et. al reintroduced the
idea of [-convergence of nets in topological spaces
and estabilished the equivalence of [-convergences
of nets and filters on topological spaces in [7]. In [8],
Jamwal et. al introduced the idea of I—cluster point of
filters and studied its various properties. Jamwal et. al
estabilished the equivalence of I-cluster points of
filters and cluster points of nets as well as the
equivalence of I—cluster points of filters and nets in
[9].

We start with the following definitions:
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Definition 1.1 Let X be a non-empty set. Then a
family F c 2% is called a filter on X if

HoerF,

(i) A,B € F implies AN B € F and

(i) A€eF, B> Aimplies BeF.

Definition 1.2 Let X be a non-empty set. Then a
family | < 2% is called an ideal of X if

(i) o€l

(i) A,B € | implies Au B el and

(i) Ael,Bc Aimplies B € I.

Definition 1.3 Let X be a non-empty set. Then a filter
F on Xis said to be non-trivial if F # {X}.

Definition 1.4 Let X be a non-empty set. Then an
ideal | of X is said to be non-trivial if I # {@} and X
¢l

Note (i) F = F(I) = {A c X: X\ A € I} is a filter on
X, called the filter associated with the ideal I.

@) I=1IF) ={A c X: X\ A € F} is an ideal of X,
called the ideal associated with the filter F.

(iii) A non-trivial ideal I of X is called admissible if |
contains all the singleton subsets of X.

Several examples of non-trivial admissible ideals
have been considered in [10].

Throughout this paper, X will stand for a topological
space and I = I(F) will be the ideal associated with
the filter | on X.

We give a brief discussion on I—convergence and

I-cluster points of filters and nets in topological
spaces as given by [6], [7], [8], [9].

Definition 1.5 A filter F on X is said to be
I-convergent to X € X if for each nbd U of X, , {y €
X:y¢gU}el

In this case, X is called an /—Iimit of F and is written
as [—lim F = x.

Definition 1.6 A point x € X is called an /—cluster
point of a filter F on X if for each nbd U of xy , {y €
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X:y €U} &l In other words, X € X is called an
I-cluster point of F if U & I, for each nbd U of x .
Equivalently, x is an I-cluster point of F if for each
nbdUofx ,{VeEPX):UcV}Zl

Definition 1.7 Let | be a non-trivial ideal of subsets of
X. Let A : D — X be a net in X, where D is a directed
set. Then A is said to be I—convergent to X in X if for
eachnbd Uofx , {A(c) EX:A(c)2 U}EL

Notation In case more than one filters is involved, we
use the notation I(F) to denote the ideal associated
with the corresponding filter F.

Proposition 1.8 Let F be a filter on X such that I —
lim F = xy . Then every filter G on X finer than F also
I-converges to Xy , where I = I(F).

Proposition 1.9 Let F be a filter on X such that I —
lim F = x. Then every filter G on X coarser than F
also [-converges to X, where 1= I(F).

Proposition 1.10 Let M be a collection of all those
filters G on a space X which I(G)—converge to the
same point Xy € X. Then the intersection F of all the
filters in M I(F)—converges to Xg.

Proposition 1.11 Let F be a filter on X and G be a
fiter on X finer than F. Then F has xp as an
I(G)—cluster point if and only if [(G) — lim G = X,.

Proposition 1.12 If X is Hausdorff, then an
I-convergent filter F on X has a unique I-limit.

Proposition 1.13 If every I-convergent filter F on X
has a unique I-limit, then the space X is Hausdorff.

Proposition 1.14 Let F be a filter on X and G be any
other filter on X finer than F. Then I(F) — lim G =X
implies 1(G) — lim G = x. But not conversely.

Proposition 1.15 Let E c X. Then x € E if and only
if there is a filter F on X such that E € Fand [ -limF

=X.
Theorem 1.16 A filter F on X I-converges to xg € X

if and only if every derived net A of F converges to Xp,
where I = I(F).
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Theorem 1.17 A net A : D — X converges to xg € X if
and only if the derived filter | of A I- converges to
X0, where 1= 1(F).

Theorem 1.18 A filter F on X I-converges to xg € X

if and only if every derived net A of F I-converges to
X, where I=1(F).

Lemma 1.19 A filter F on X converges to xg in X if
and only if every derived net A of F I-converges to
X0, where 1= I(F).

Theorem 1.20 Let A : D — X be a netin Xand Fbe a
derived filter of A. Then X I-converges to xg in X if
and only if the derived filter F I-converges to xg,
where 1= I(F).

Theorem 1.21 A filter F Ix —converges to xin X =
ITuep X, if and only if p, (F) Ix,—converges to py (X),
V a, where Ix = Ix (F) and Ix, = lxq (Po(F))-

1. -CONVERGENCE OF ULTRAFILTERS
We begin this section with the following results.

Theorem 2.1 A filter F on X I-converges to xp in X if
and only if every ultrafiter on X containing F
I-converges to X9, where 1= I(F).

Proof. Suppose I — lim F = xp. Let G be an ultrafilter
on X containing F. Since G D F, by Proposition 1.8,
[ —lim G =%, where I = I(F).

Conversely, suppose that every ultrafilter G on X
containing the filter F I-converges to xq, where | =
I(F). By Proposition 1.14, I(G) — lim G = X.

Since I(G) — lim G = Xy, by Proposition 1.10 the filter
N{G : G > F and G I(G) — converges to Xp}
I(F)—converges to x. Evidently, the value of this
intersection is F (By Proposition 7, page 61, [2]).
Consequently, F also I-converges to xo , where | =

1(F).

Lemma 2.2 If a filter F on X I(F)—converges to xg in
X, then every ultrafiter G on X containing F
I(G)—converges to xp. But not conversely.

Proof. It follows from above Theorem 2.1 and
Proposition 1.14.
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But converse may not be true. That is, if an ultrafilter
G containing a filter F on X I(G)—converges to Xy €
X, then the filter ' on X may not I(F)—converge to xo.
Consider the example:

Let X = {1, 2, 3} and © = {0, {2}, {2, 3}, X} be a
topology on X.

Let | = {{2, 3}, X} be a filter on X. Then I(F) = {@,
{1}} is an ideal associated with F.

It is easy to see that I(F) —lim J = 3.

Let G = {{2}, {1, 2}, {2, 3}, X} be an ultrafilter on X
containing F. Then I(G) ={®, {1}, {3}, {1, 3}}.

We can easily see that 1, 2 and 3 are I(G)—limits of
G. But 2 is not an I(F)—limit of F.

Lemma 2.3 Let F be a filter on X and G be an
ultrafilter on X containing F. Then I(G) — lim F = xg
if and only if I(G) — lim G = X.

Proof. Suppose I(G) —limF =xg - - - (*). Let Gbe an
ultrafilter on X containing F. We have to show that
I(G) — lim G = x. For this, let U be a nbd of xy. We
claim that {y € X:y € U } € I(G). The claim follows
clearly by (%).

Hence I(G) — lim G = x.

Converse follows clearly by Proposition 1.9.

Theorem 2.4 Let F be a filter on X and G be an
ultrafilter on X containing F. Then F has x as an
I-cluster point if and only if G is I-convergent to xg,
where | = 1(G).

Proof. Let F be a filter on X and G be an ultra-filter
on X containing F. Then by Proposition 1.11, F has
¥ as an I—cluster point if and only if [ — lim G = X,
where | = I(G).

Theorem 2.5 An ultrafilter G I-converges to a point
X in X if and only if Xy is an I-cluster point of G,
where | = I(G).

Proof. Suppose I — lim G = X . Then by Proposition
1.11, I=cluster point of G is X . This is because G is
maximal and a filter finer than G is G itself.
Conversely, suppose Xy is an I—cluster point of the
ultrafilter G on X. Then by Proposition 1.11, there is
a filter F finer than G such that I(F) — lim F = x, . But
G is maximal, so F=G.

Hence I — lim G = X%, where | = [(G).
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Theorem 2.6 X is Hausdorff if and only if every
I-convergent ultrafilter | on X has a unique I-limit,
where I = I(F).

Proof. Suppose X is Hausdorff. Let F be an
I-convergent ultrafilter on X. Since F is a filter on X,
by Proposition 1.12, F has a unique I-limit.
Conversely, suppose each I-convergent ultrafilter on
X has a unique I-limit. We have to show that X is
Hausdorff. Suppose X is not Hausdorff. Then by
Proposition 1.13, there exists an I-convergent filter,
say F on X which does not have a unique I(f)—limit.
By above Theorem 21, there exists an
I(F)—convergent ultrafilter G containing F which
does not have a unique I(F)-limt and so by
Proposition 1.14, G does not have a unigque
I(@)—limit, which is a contradiction. Therefore, our
supposition is wrong.

Hence X is Hausdorff.

Proposition 2.7 A space X is compact if and only if
each ultrafilter on X is [-convergent.

Proof. First suppose X is compact. We have to show
that each ultrafilter on X is I-convergent. Suppose
not. Then there is an ultrafilter F on X such that F
does not I-converge to any x € X, where I = I(F).
Then for each x in X, there is an (open) nbd Ux
containing x such that {V € P(X) : Uy N V=0} € |
().

Clearly, {Uy : x € X} is an open cover of X. Since X
is compact, the above open cover of X has a finite
sub cover,say {Ux :i=1,2,...,n}.

Now, U"i-; Ux = X and X € F

= U"iz1Ux €F

= Ux €F, for some i

= X\ Ux € |, for some i, which contradicts () as
U N X\ Ux ) =0 implies X\ Ux ¢ I, for any i.
Thus our supposition is wrong.

This proves that each ultrafilter on X is I-convergent.
Conversely, suppose each ultrafilter on X is
I-convergent. We have to show that X is compact.
Suppose the contrary that X is not compact. Then
there is an open cover U of X with no finite subcover.
Let B={X\U"i-1Ui:U;€U,i=1, 2,...,n;n EN}.

Then clearly, B is a non-empty family of non-empty
subsets of X which is closed under finite intersection
and so a filter base for some filter, say F on X. Since
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every filter is contained in an ultrafilter, there is an
ultrafilter G on X such that F < G. By the given
condition, G is I-convergent, where 1 = I(G).
Suppose I — lim G = X . Then for each nbd U of xg ,
{VePX):UNV=0}c |- (xx).

Now clearly, X\U € Bandso X\U € G

Now U, X\ U € Gimplies U N (X\U) € G That is,
@ € @G, which is not true. Thus our suppositon is
wrong.

Hence X is compact.

We recall the following:

Maps between the sets can be put to act on
ultrafilters. More precisely, one has the following
construction.

Suppose f: X — Yis a map and U is an ultrafilter on
X. Consider the collection

U ={VcY:f ' (V)eU}Z Then f () is
clearly an ultrafilter on Y. With the above notations,
we havef(U)e (), vU e U.

Proposition 2.8 Let X € X and f: X — Y be a map.
Then f is continuous at x if and only if whenever U
is an ultrafilter on X with Ix — lim U = Xy, then f (U)
is an ultrafilter on Y with Iy — lim () = f (X),

where Ix = Ix (U) and Iy = Iy (f+ V).

Proof. First suppose f: X — Y is continuous at xg.
Let U be an ultrafilter on X such that Ix— lim U = X,
Then for each nbd U of X5, {W € PX) : U N W =
P}c IX « < « (¥). By above recall fx (U) is an
ultrafilter on Y. We have to show that IY — lim f (U)
= f (X0). For this, let V be a nbd of f (X0) in Y. We
claimthat {T e P(Y): VNT=0}clY.So, letT €
P(Y) such that VN T = @. Since f is continuous at
X0, for above nbd V of f (x0), there exists a nbd U of
X0 such that f (U) € V. Now, VN T = @ implies
that T Y\V c Y\ (U) oo ().

Now, from (), U N (X \ U) = @ implies that X\ U €
IX and so U € U. This further implies that f (U) €
f(). Thus Y\ f (U) € IY . Since ideal is closed under
subsets, from (xx), TE IY .

This proves that IY — lim f(U)) = f (x0).

Conversely, suppose the condition holds. We have to
show that f is continuous at xy. Suppose the contrary
that f is not continuous at X,. Then there exists a nbd
V of f (%) such that f ' (V) is not a nbd of X.
Consider F = {U \ f ' (V) :U is a nbd of x}. Our
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assumption on V shows that all the sets in J are non-
empty. Otherwise, f ~' (V) would contain some nbd
of % , which would force f ' (V) itself to be a nbd of
%. It is clear that F is a filter on X. Let U be an ultra-
filter on X containing F. We claim that Ix — im U =
X, Where Ix = Ix (). For this, let U be a nbd of x.
We need to showthat {W € P(X) : U N W = @} c Ix
So let W € P(X) such that UN'W = @.

Now, UNW =0 implies W c X\ U - - (x * %),

We first show that Uxy € U. Suppose not. Then there
is a nbd U of X such that U € U. Then clearly, X\ U
€ U. Now, X\ U, U\ f ' (V) € U implies that @ = (X
\U) N @\ (V) ey, which is not possible. Thus
Ux < U. Thatis, U € U,V U € Ux. So, X\ U € Iy,
V U € Uxy. Since Iy is an ideal of X, from (* * *), W
€ Ix . This proves that {W € P(X) : UN W =0} c
|x.

Hence Ix — lim U = X.

By the given condition, Iy —lim fx (U) = f (x)).

Since Vis a nbd of f () and f+ (U) is Iy —convergent
to f (x), it follows that V € f (UJ), which means that
f' (V) € U. But this leads to a contradiction since X \
f 71 (V) clearly belongs to F c .

Therefore, f must be continuous at Xo.

Characterization of Closure

Proposition 2.9 Let E c X. Then x € Eif and only if
there is an ultrafilter Gon X such that E€ Gand I —
lim G = x, where | = I(G).

Proof. First suppose X3 € E. Then each nbd of x
meets E. That is, U N E= 0, V U € Uxy, where Ux
is the nbd systemat . Let F={UNE:U€eUx }U
UX. Then F is clearly a filter on X containing E.

Let G be an ultrafilter on X containing F. Then E € G
and U € G, V U € Uxy. We shall show that I — lim G
= X, Where | = I(G). For this, let U be a nbd of X,.
We claim that{V e PX) :UNV=0}c I

So, let Ve P(X) such that UNV=0. Now, UNV =
@ implies that U ¢ X \ V. Also, U € Gand G is a
filter on X implies that X\V € G. Thus Ve l.
Therefore, I —lim G = X .

Converse is obvious using Proposition 1.15.

Theorem 2.10 An ultra-filter U Ix —converges to x in
X = Iyep X, if and only if p,(U) lx, —converges to
Pu(X), V 0, where Ix = Ix (U) and Ixq = Ixo (Po (U))-
Proof. It follows by Theorem 1.21.
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I1l. EQUIVALENCE OF I-CONVERGENCE OF
ULTRAFILTERS AND CONVERGENCE OF
NETS

We start with the following terms.

We know that every filter is contained in an
ultrafilter. An ultrafilter which contains a derived
filter is called a derived ultrafilter.

Let F be an indexed filter on X with index set D. Any
net A : D — X with A(d) € Fy is called a derived net
of F.

A net A : D — X in Xis said to be convergent to x €
X if for each nbd U of xy, there is some d € D such
that ¢ > d in D implies that A(c) € U. In other words,
some tail Ag= {A(c):c>din D} c U.

Theorem 3.1 An ultrafilter G on X I-converges to Xy
in X if and only if every derived net A of Gconverges
to % in X, where | = 1(G).

Proof. Since every ultra-filter G on X itself is a filter
on X, the proof follows by Theorem 1.16.

Lemma 3.2 An ultra-filter G on X I-converges to xg
in X if and only if G converges to X in X

Proof. It follows from above Theorem 3.1 and the
fact that an ultra-filter G on X converges to X, in X if
and only if every derived net of G converges to X in
X.

Theorem 3.3 A net A: D — X converges to xp in X if
and only if the derived ultra-filter I-converges to Xy
in X.

Proof Suppose a net A: D — X converges to xg in X.
Then by Theoreml.17, the derived filter, say F
I(F)—converges to Xy and so the derived ultrafilter,
say G, I(F)—converges to xg. By Proposition 1.14, the
derived ultra-filter G I (G) —converges to xo.
Converse follows clearly by Theorem 1.17.

IV. EQUIVALENCE OF I-CONVERGENCE OF
ULTRAFILTERS AND I-CONVERGENCE OF
NETS

Theorem 4.1 An ultrafilter G on X I-converges to xg
in X if and only if every derived net A of G
I-converges to X in X, where | = I(G).
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Proof. Since every ultrafilter G on X itself is a filter
on X, the proof follows by Theorem 1.18.

Lemma 4.2 An ultrafilter G on X converges to X, in X
if and only if every derived net A of G I-converges
to % in X

Proof. It follows from above Theorem 4.1 and
Lemma 1.19.

Theorem 4.3 Let L : D — X be anetin X and Gbe a
derived ultrafilter of A.Then A I-converges to xg in X
if and only if G I-converges to xy in X, where | =

I(G).

Proof. It follows clearly by Theorem 1.20.
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