
© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145840 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 464

On the Maximum Rate of Networked Computation in a

Capacitated Network

Vuttaradi Sangeetha
1
, A. Lizi

2

1,2
M.C.A, RCR Institutes of Management and Technology

Abstract- A classical network application, e.g., search,

that requires assimilation of source data available at

various servers to generate the desired output at a

particular server, called the sink. Such an application

requires the data to be transmitted over the network of

communication links connecting the servers and

computation of a function of this data. In-network

computation enables the computation of partial

functions of the data on intermediate servers; this

situation is also studied for other network applications

like query processing on a network, and information

processing in sensor network.

INTRODUCTION

Consider a classical network application, e.g., search

that requires assimilation of source data available at

various servers to generate the desired output at a

particular server, called the sink. Such an application

requires the data to be transmitted over the network

of communication links connecting the servers and

computation of a function of this data. In-network

computation enables the computation of partial

functions of the data on intermediate servers; this

may reduce the time (or cost, the number of

transmissions) to get the final function value at the

sink. This situation is also studied for other network

applications like query processing on a network, and

information processing in sensor network.

EXISTING SYSTEM

In Existing System, We are given a capacitated

communication network and several infinite

sequences of source data each of which is available at

some node in the network. A function of the source

data is to be computed in the network and made

available at a sink node that is also on the network.

The schema to compute the function is given as a

directed acyclic graph (DAG). Here we consider the

problem of finding the communication and in-

network computation schedule of a given arbitrary

function of distributed data so as to maximize the rate

of computation.

DISADVANTAGES

• It maximizes the computation rate.

• Accounting of data symbols in routing-

computing scheme significantly difficult

PROPOSED SYSTEM

• In Proposed System, We want to generate a

computation and communication schedule in the

network to maximize the rate of computation of

the function for an arbitrary function

(represented by DAG). We first analyze the

complexity of finding the rate maximizing

schedule for the general DAG. We show that

finding an optimal schedule is equivalent to

solving a packing linear program (LP). We then

prove that finding the maximum rate is MAX

SNP-hard (by analyzing this packing LP) even

when the DAG has bounded degree, bounded

edge weights and the network has three vertices.

We then consider special cases arising in

practical situations. First, a polynomial time

algorithm for the network with two vertices is

presented. This algorithm is a reduction to a

version of a sub modular function minimization

problem. Next, for the general network we

describe a restricted class of schedules and its

equivalent packing LP.

ADVANTAGES

• Reduce the time (or cost, the number of

transmissions) to get the final function value at

the sink .

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145840 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 465

• It is reduction to a version of a sub modular

function minimizat ion problem.

IMPLEMENTATION

MODULES:

Polynomial time algorithm:

In the preceding we have proved that finding

minimum cost embedding is NP-hard even when

there are only three vertices in N. In this section we

present a polynomial time algorithm to find the

minimum cost embedding when the network graph

has only two vertices. We can obtain a rate

maximizing schedule for an arbitrary computation

graph on a two node network graph in polynomial

time. This case is important to analyze for at least

two reasons. Firstly, the hardness result is for the case

when there are three nodes and this essentially shows

that the two-node case can be solved in polynomial

time. Secondly, since this algorithm can be used to

construct efficient heuristics for the general case.

Polynomial time α-approximation algorithm:

It is used to solve R-CALP iff there is a polynomial

time α-approximation algorithm for solving

MinCost(C) of G on N. The instance of minimum

cost embedding problem which we created has the

optimal embedding in which one vertex of G is

mapped to only one vertex of N. Thus the reduction

presented there also proves that solving the minimum

cost R-Embedding problem is MAX SNP-hard. In the

rest of this section we present some approximation

algorithms to solve MinCost(C) problem thus giving

approximate solutions for R-CALP.

SOFTWARE ENVIRONMENT

Java Technology

Java technology is both a programming language and

a platform.

The Java Programming Language

The Java programming language is a high-level

language that can be characterized by all of the

following buzzwords:

 Simple

 Architecture neutral

 Object oriented

 Portable

 Distributed

 High performance

 Interpreted

 Multithreaded

 Robust

 Dynamic

 Secure

With most programming languages, you either

compile or interpret a program so that you can run it

on your computer. The Java programming language

is unusual in that a program is both compiled and

interpreted. With the compiler, first you translate a

program into an intermediate language called Java

byte codes —the platform-independent codes

interpreted by the interpreter on the Java platform.

The interpreter parses and runs each Java byte code

instruction on the computer. Compilation happens

just once; interpretation occurs each time the program

is executed. The following figure illustrates how this

works.

 You can think of Java byte codes as

the machine code instructions for the Java Virtual

Machine (Java VM). Every Java interpreter, whether

it’s a development tool or a Web browser that can run

applets, is an implementation of the Java VM. Java

byte codes help make ―write once, run anywhere‖

possible. You can compile your program into byte

codes on any platform that has a Java compiler. The

byte codes can then be run on any implementation of

the Java VM. That means that as long as a computer

has a Java VM, the same program written in the Java

programming language can run on Windows 2000, a

Solaris workstation, or on an iMac.

The Java Platform

A platform is the hardware or software environment

in which a program runs. We’ve already mentioned

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145840 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 466

some of the most popular platforms like Windows

2000, Linux, Solaris, and MacOS. Most platforms

can be described as a combination of the operating

system and hardware. The Java platform differs from

most other platforms in that it’s a software-only

platform that runs on top of other hardware-based

platforms.

The Java platform has two components:

 The Java Virtual Machine (Java VM)

 The Java Application Programming Interface

(Java API)

You’ve already been introduced to the Java VM. It’s

the base for the Java platform and is ported onto

various hardware-based platforms.

The Java API is a large collection of ready-made

software components that provide many useful

capabilities, such as graphical user interface (GUI)

widgets. The Java API is grouped into libraries of

related classes and interfaces; these libraries are

known as packages. The next section, What Can Java

Technology Do? Highlights what functionality some

of the packages in the Java API provide.

The following figure depicts a program that’s running

on the Java platform. As the figure shows, the Java

API and the virtual machine insulate the program

from the hardware.

Native code is code that after you compile it, the

compiled code runs on a specific hardware platform.

As a platform-independent environment, the Java

platform can be a bit slower than native code.

However, smart compilers, well-tuned interpreters,

and just-in-time byte code compilers can bring

performance close to that of native code without

threatening portability.

WHAT CAN JAVA TECHNOLOGY DO?

The most common types of programs written in the

Java programming language are applets and

applications. If you’ve surfed the Web, you’re

probably already familiar with applets. An applet is a

program that adheres to certain conventions that

allow it to run within a Java-enabled browser.

However, the Java programming language is not just

for writing cute, entertaining applets for the Web.

The general-purpose, high-level Java programming

language is also a powerful software platform. Using

the generous API, you can write many types of

programs.

An application is a standalone program that runs

directly on the Java platform. A special kind of

application known as a server serves and supports

clients on a network. Examples of servers are Web

servers, proxy servers, mail servers, and print servers.

Another specialized program is a servlet. A servlet

can almost be thought of as an applet that runs on the

server side. Java Servlets are a popular choice for

building interactive web applications, replacing the

use of CGI scripts. Servlets are similar to applets in

that they are runtime extensions of applications.

Instead of working in browsers, though, servlets run

within Java Web servers, configuring or tailoring the

server.

How does the API support all these kinds of

programs? It does so with packages of software

components that provides a wide range of

functionality. Every full implementation of the Java

platform gives you the following features:

 The essentials: Objects, strings, threads,

numbers, input and output, data structures,

system properties, date and time, and so on.

 Applets: The set of conventions used by applets.

 Networking: URLs, TCP (Transmission Control

Protocol), UDP (User Data gram Protocol)

sockets, and IP (Internet Protocol) addresses.

 Internationalization: Help for writing programs

that can be localized for users worldwide.

Programs can automatically adapt to specific

locales and be displayed in the appropriate

language.

 Security: Both low level and high level,

including electronic signatures, public and

private key management, access control, and

certificates.

 Software components: Known as JavaBeans
TM

,

can plug into existing component architectures.

 Object serialization: Allows lightweight

persistence and communication via Remote

Method Invocation (RMI).

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145840 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 467

 Java Database Connectivity (JDBC
TM

): Provides

uniform access to a wide range of relational

databases.

The Java platform also has APIs for 2D and 3D

graphics, accessibility, servers, collaboration,

telephony, speech, animation, and more. The

following figure depicts what is included in the Java

2 SDK.

UML DIAGRAMS

UML stands for Unified Modeling Language. UML

is a standardized general-purpose modeling language

in the field of object-oriented software engineering.

The standard is managed, and was created by, the

Object Management Group.

The goal is for UML to become a common language

for creating models of object oriented computer

software. In its current form UML is comprised of

two major components: a Meta-model and a notation.

In the future, some form of method or process may

also be added to; or associated with, UML.

The Unified Modeling Language is a standard

language for specifying, Visualization, Constructing

and documenting the artifacts of software system, as

well as for business modeling and other non-software

systems.

The UML represents a collection of best engineering

practices that have proven successful in the modeling

of large and complex systems.

 The UML is a very important part of developing

objects oriented software and the software

development process. The UML uses mostly

graphical notations to express the design of software

projects.

GOALS

The Primary goals in the design of the UML are as

follows:

1. Provide users a ready-to-use, expressive visual

modeling Language so that they can develop and

exchange meaningful models.

2. Provide extendibility and specialization

mechanisms to extend the core concepts.

3. Be independent of particular programming

languages and development process.

4. Provide a formal basis for understanding the

modeling language.

5. Encourage the growth of OO tools market.

6. Support higher level development concepts such

as collaborations, frameworks, patterns and

components.

7. Integrate best practices.

USE CASE DIAGRAM

A use case diagram in the Unified Modeling

Language (UML) is a type of behavioral diagram

defined by and created from a Use-case analysis. Its

purpose is to present a graphical overview of the

functionality provided by a system in terms of actors,

their goals (represented as use cases), and any

dependencies between those use cases. The main

purpose of a use case diagram is to show what system

functions are performed for which actor. Roles of the

actors in the system can be depicted.

CLASS DIAGRAM

In software engineering, a class diagram in the

Unified Modeling Language (UML) is a type of static

structure diagram that describes the structure of a

system by showing the system's classes, their

attributes, operations (or methods), and the

uploadDataset

viewDataset
System

viewGraph

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145840 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 468

relationships among the classes. It explains which

class contains information.

SEQUENCE DIAGRAM

A sequence diagram in Unified Modeling Language

(UML) is a kind of interaction diagram that shows

how processes operate with one another and in what

order. It is a construct of a Message Sequence Chart.

Sequence diagrams are sometimes called event

diagrams, event scenarios, and timing diagrams.

COLLABORATION DIAGRAM

In collaboration diagram the method call sequence is

indicated by some numbering technique as shown

below. The number indicates how the methods are

called one after another. We have taken the same

order management system to describe the

collaboration diagram. The method calls are similar

to that of a sequence diagram. But the difference is

that the sequence diagram does not describe the

object organization where as the collaboration

diagram shows the object organization.

ACTIVITY DIAGRAM

Activity diagrams are graphical representations of

workflows of stepwise activities and actions with

support for choice, iteration and concurrency. In the

Unified Modeling Language, activity diagrams can

be used to describe the business and operational step-

by-step workflows of components in a system. An

activity diagram shows the overall flow of control.

DEPLOYMENT DIAGRAM

Deployment diagram represents the deployment view

of a system. It is related to the component diagram.

Because the components are deployed using the

deployment diagrams. A deployment diagram

System

uploadaDataset

viewDataset

viewGraph

System

1: uploadaDataset
2: viewDataset
3: viewGraph

System

uploadDataset

viewDataset

viewGraph

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145840 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 469

consists of nodes. Nodes are nothing but physical

hardwares used to deploy the application.

CONCLUSION

In this paper we studied the problem of finding

maximum rate schedule to compute a function f on a

capacitated network N when the computation schema

for f is given by a DAG, G. We proved that solving

this problem is MAX SNP-hard for General DAG G.

We presented some polynomial time approximation

algorithms for a restricted class of schedules.

Algorithmic lower bounds have been obtained for

many known NP-hard problems under the

exponential running time assumption for algorithms

for satisfiability (SAT) problem. These assumptions

are called Exponential Time Hypothesis (ETH) and

Strong Exponential Time Hypothesis (SETH). SETH

and ETH have led to tight lower bounds for several

graph problems on bounded tree width graphs (with

running time being exponential in tree width). It will

be interesting to investigate the maximum rate

problem under ETH and SETH. We provided some

polynomial time approximation algorithms for

minimum cost embedding problem here, but we did

not investigate the parameterized complexity of the

problem. Possible parameters for the minimum cost

embedding problem could be the tree width of G, or

the number of sources in G. Finding algorithms

which are exponential only in the size of the fixed

parameter but polynomial in the size of input can

enhance the understanding of the minimum cost

embedding problem and help us design better

algorithms for a general class of G.

BIBILOGRAPHY

[1] A. Giridhar and P. R. Kumar, ―Computing and

communicating functions over sensor networks,‖

IEEE J. Sel. Areas Commun., vol. 23, no. 23, pp.

755–764, Apr. 2005.

[2] L. Ying, Z. Liu, D. Towsley, and C. H. Xia,

―Distributed operator placement and data

caching in large-scale sensor networks,‖ in Proc.

IEEE INFOCOM, Apr. 2008, pp. 1651–1659.

[3] J. Liu, C. H. Xia, N. B. Shroff, and X. Zhang,

―On distributed computation rate optimization

for deploying cloud computing programming

frameworks,‖ ACM SIGMETRICS Perform.

Eval. Rev., vol. 40, no. 4, pp. 63–72, Mar. 2013.

[4] A. Giridhar and P. R. Kumar, ―Toward a theory

of in-network computation in wireless sensor

networks,‖ IEEE Commun. Mag., vol. 44, no. 4,

pp. 98–107, Apr. 2006.

[5] N. Khude, A. Kumar, and A. Karnik, ―Time and

energy complexity of distributed computation in

wireless sensor networks,‖ in Proc. IEEE

INFOCOM, Mar. 2005, pp. 2625–2637.

[6] L. Ying, R. Srikant, and G. E. Dullerud,

―Distributed symmetric function computation in

noisy wireless sensor networks,‖ IEEE Trans.

Inf. Theory, vol. 53, no. 12, pp. 4826–4833, Dec.

2007.

[7] C. Dutta, Y. Kanoria, D. Manjunath, and J.

Radhakrishnan, ―A tight lower bound for parity

in noisy communication networks,‖ in Proc. 19th

Annu. ACM-SIAM Symp. Discrete Algorithms

(SODA), San Francisco, CA, USA, 2008, pp.

1056–1065.

[8] S. K. Iyer, D. Manjunath, and R. Sundaresan,

―In-network computation in random wireless

networks: A PAC approach to constant refresh

rates with lower energy costs,‖ IEEE Trans.

Mobile Comput., vol. 10, no. 1, pp. 146–155,

Jan. 2011.

[9] S. Kamath, D. Manjunath, and R. Mazumdar,

―On distributed function computation in

structure-free random wireless networks,‖ IEEE

Trans. Inf. Theory, vol. 60, no. 1, pp. 432–442,

Jan. 2014.

[10] S. Kannan and P. Viswanath, ―Multi-session

function computation and multicasting in

undirected graphs,‖ IEEE J. Sel. Areas

Commun., vol. 31, no. 4, pp. 702–713, Apr.

2013.

[11] N. Karamchandani, R. Appuswamy, and M.

Franceschetti, ―Time and energy complexity of

function computation over networks,‖ IEEE

Trans. Inf. Theory, vol. 57, no. 12, pp. 7671–

7684, Dec. 2011.

[12] R. Appusamy, M. Franceschetti, N.

Karamchandani, and K. Zeger, ―Network coding

for computing: Cut-set bounds,‖ IEEE Trans.

DatasetSystem

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145840 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 470

Inf. Theory, vol. 57, no. 2, pp. 1015–1030, Feb.

2011.

[13] B. K. Rai and B. K. Dey, ―On network coding

for sum-networks,‖ IEEE Trans. Inf. Theory, vol.

58, no. 1, pp. 50–63, Jan. 2012.

[14] J. Dean and S. Ghemawat, ―MapReduce:

Simplified data processing on large clusters,‖ in

Proc. 6th Symp. Oper. Syst. Design Implement.

(OSDI), 2004, pp. 137–150.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D.

Fetterli, ―Dryad: Distributed data-parallel

programs from sequential building blocks,‖ in

Proc. Eur. Conf. Comput. Syst. (EuroSys), 2007,

pp. 59–72.

[16] F. Chen, M. Kodialam, and T. V. Lakshman,

―Joint scheduling of processing and shuffle

phases in MapReduce systems,‖ in Proc. IEEE

INFOCOM, Mar. 2012, pp. 1143–1151.

[17] M. Lin, J. Tan, A. Wierman, and L. Zhang,

―Joint optimization of overlapping phases in

MapReduce,‖ Perform. Eval., vol. 70, no. 10, pp.

720–735, 2013.

[18] V. Shah, B. K. Dey, and D. Manjunath,

―Network flows for function computation,‖ IEEE

J. Sel. Areas Commun., vol. 31, no. 4, pp. 714–

730, Apr. 2013.

[19] X. Liu et al., ―CDC: Compressive data collection

for wireless sensor networks,‖ IEEE Trans.

Parallel Distrib. Syst., vol. 26, no. 8, pp. 2188–

2197, Aug. 2015.

[20] K. Jain, M. Mahdian, and M. R. Salvatipour,

―Packing Steiner trees,‖ in Proc. 10th Annu.

ACM-SIAM Symp. Discrete Algorithms

(SODA), 2003, pp. 266–274.

[21] M. A. Maddah-Ali and U. Niesen,

―Decentralized coded caching attains order-

optimal memory-rate tradeoff,‖ IEEE/ACM

Trans. Netw., vol. 23, no. 4, pp. 1029–1040,

Aug. 2014.

[22] M. Garey and D. Johnson, Computers and

Intractability: A Guide to the Theory of NP-

Completeness. San Francisco, CA, USA:

Freeman, 1979.

[23] P. Berman and M. Karpinski, ―On some tighter

inapproximability results (extended abstract),‖ in

Proc. 26th Int. Colloq. Automata, Lang.

Programm., 1999, pp. 200–209.

[24] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou,

P. D. Seymour, and M. Yannakakis, ―The

complexity of multiterminal cuts,‖ SIAM J.

Comput., vol. 23, no. 4, pp. 864–894, 1994.

[25] A. Schrijver, ―A combinatorial algorithm

minimizing submodular functions in strongly

polynomial time,‖ J. Combinat. Theory, Ser. B,

vol. 80, no. 2, pp. 346–355, 2000.

[26] P. Vyavahare, N. Limaye, and D. Manjunath,

―Optimal embedding of functions for in-network

computation: Complexity analysis and

algorithms,‖ IEEE/ACM Trans. Netw., vol. 24,

no. 4, pp. 2019–2032, Aug. 2016, doi:

10.1109/TNET.2015.2445835.

[27] B. J. Bonfils and P. Bonnet, ―Adaptive and

decentralized operator placement for in-network

query processing,‖ Telecommun. Syst., vol. 26,

no. 2, pp. 389–409, 2004.

[28] Z. Abrams and J. Liu, ―Greedy is good: On

service tree placement for in-network stream

processing,‖ Dept. Comput. Sci., MSR, Seattle,

WA, USA, Tech. Rep., 2005.

[29] A. Phatak and V. K. Prasanna, ―Energy-efficient

task mapping for data-driven sensor network

macroprogramming,‖ IEEE Trans. Comput., vol.

59, no. 7, pp. 955–968, Jul. 2010.

[30] S. H. Bokhari, ―A shortest tree algorithm for

optimal assignments across space and time in a

distributed processor system,‖ IEEE Trans.

Softw. Eng., vol. SE-7, no. 6, pp. 583–589, Nov.

1981.

[31] H. Stone, ―Multiprocessor scheduling with the

aid of network flow algorithms,‖ IEEE Trans.

Softw. Eng., vol. SE-3, no. 1, pp. 85–93, Jan.

1977.

[32] V. M. Lo, ―Heuristic algorithms for task

assignment in distributed systems,‖ IEEE Trans.

Comput., vol. 37, no. 11, pp. 1384–1397, Nov.

1988.

[33] D. Fernandez-Baca, ―Allocating modules to

processors in a distributed system,‖ IEEE Trans.

Softw. Eng., vol. 15, no. 11, pp. 1427–1436,

Nov. 1989.

[34] A. V. Karzanov, ―Minimum 0-extensions of

graph metrics,‖ Eur. J. Combinat., vol. 19, no. 1,

pp. 71–101, 1998.

[35] H. Karloff, S. Khot, A. Mehta, and Y. Rabani,

―On earthmover distance, metric labeling, and 0-

extension,‖ in Proc. ACM STOC, 2006, pp. 547–

556.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145840 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 471

[36] P. Vyavahare and A. Shetty. (2014). On

Selection of the Optimal Embeddings of General

Dag Functions. [Online].

[37] G. Calinescu, H. Karloff, and Y. Rabani,

―Approximation algorithms for the 0-extension

problem,‖ in Proc. ACM-SIAM Symp. Discrete

Algorithms, 2001, pp. 8–16.

[38] P. Vyavahare and A. Shetty, ―On optimal

embeddings for distributed computation of

arbitrary functions,‖ in Proc. SPCOMM, Jul.

2014, pp. 1–6.

[39] A. Archer et al., ―Approximate classification via

earthmover metrics,‖ in Proc. 15th Annu. ACM-

SIAM Symp. Discrete Algorithms (SODA),

2004, pp. 1079–1087.

[40] D. Lokshtanov, D. Marx, and S. Saurabh,

―Lower bounds based on the exponential time

hypothesis,‖ Bull. EATCS, vol. 105, pp. 41–72,

Oct. 2011.

[41] R. G. Downey, Parametrized Complexity. Berlin,

Germany: Springer-Verlag, 1999.

