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Abstract- Bit-reversal is an essential part of the fast 

Fourier transform. However, compared to the amount 

of works on FFT architectures, much fewer works are 

dedicated to bit-reversal circuits until recent years. In 

this brief, the minimum latency and memory required 

for calculating the bit-reversal of continuous-flow 

parallel data are formulated. The proposed circuit is 

simple and efficient for reordering the output samples 

of parallel pipelined FFT processors. The proposed 

approach can be Implemented using Verilog HDL and 

Simulated by Modelsim 6.4 c. Finally it‟s synthesized 

by Xilinx tool. 

 

Index Terms- Bit-reversal circuit, fast Fourier 

transform (FFT), MDC, MDF, natural-order FFT 

output. 

I. INTRODUCTION 

 

FAST FOURIER transform (FFT) is widely used in 

var- ious signal processing applications, such as 

spectrum analysis, image and video signal 

processing, and communi- cation systems. Over the 

past decades, various FFT hardware architectures 

have been investigated, including pipelined FFT 

architectures and memory-based FFT architectures. 

Pipelined FFTs include single-path delay feedback 

(SDF) [1], [2], single-path delay commutator (SDC) 

[3]–[5], multi-path delay feedback (MDF) [6]–[8], 

and multi-path delay commutator (MDC) [9]–[12] 

architectures. They have the advantage of high 

throughput, but demand high area cost especially for 

long-length FFTs. In contrast, memory-based FFT 

architec- tures usually have low area cost, because 

smaller numbers of butterfly processing elements 

(PE) are adopted to sequentially execute all the 

butterfly operations. Accordingly, their through- 

puts are often limited. 

Recently, parallel pipelined FFT architectures [6]–

[13] were proposed to enhance throughput by 

increasing parallelism of the whole architecture. As 

such, they can meet the demand of extremely high 

data rates of current state-of-art wireless com- 

munication systems, such as UWB (Ultra Wideband), 

IEEE 802.15.3c, or IEEE 802.11ac/ad. Two major 

function blocks should be designed for pipelined FFT 

processors, one is the FFT architecture itself and the 

other one is the bit-reversal circuit. The function of 

the bit-reversal circuit is to convert the non-nat- ural 

output order of the FFT architecture to natural order. 

This feature is especially important for 

communication systems, because FFT processors are 

usually followed by frequency-do- main equalizer 

which requires timely and natural-order input data. 

However, much fewer works are dedicated to bit-

reversal circuit design in the literature until recent 

years, compared to the amount of works on FFT 

architecture designs. For general memory-based FFT 

architectures, there are memory addressing schemes 

[14]–[16], which facilitate natural-order FFT out- 

puts. For pipelined FFT, bit-reversal circuits must 

support continuous-flow processing for the 

consideration of seamless generation of FFT outputs, 

due to contiguous inputs. Several works in the 

literature [2]–[5], [17]–[19], proposed bit-reversal 

circuits for single-path pipelined FFT architectures. 

For parallel pipelined FFTs, the design of the 

reordering circuits is even more challenging as it 

requires reordering multiple concurrent FFT outputs 

simultaneously. Thus, only a few works in the 

literature discuss this problem [9], [10], [12]. Among 

them, reordering circuits for parallel data are 

described in [9], [10]. The circuit proposed in [9] 

calculates the bit reversal for par- allel output data, 

but its hardware complexity is high. On the other 

hand, the outputs of FFTs in [10] are in an order 

different from bit reversal, and therefore the 

reordering circuit is only applicable to this specific 

order. 
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This work proposes a new bit-reversal circuit for 

parallel data that can be used for both MDC and 

MDF FFT architectures. The main contributions of 

this work are twofold. First, it is the first parallel bit-

reversal circuit based on single-port memory. Be- 

sides, it is area-efficient, as the total memory sizei, 

where is FFT length. Second, the proposed reordering 

mechanism 

is regular and flexible for supporting general power-

of-2 FFT sizes, as well as variable-length bit reversal. 

The rest of this article is organized as follows. In 

Section II, existing bit-re- versal circuits are 

reviewed. In Section III, the design problem for a 

parallel bit reversal circuit is formulated. In Section 

IV, the proposed bit-reversal circuit is presented. 

Implementations and comparisons with existing bit 

reversal circuits are made in Section V, followed by 

conclusions in Section VI. 

 

II.REVIEW OF EXISTING BIT REVERSAL 

CIRCUITS 

 

There are various bit-reversal addressing schemes 

proposed in the literature. For non-continuous data 

flow, the schemes proposed in [20]–[23] focus on 

calculating the bit reversal    on data stored in a 

memory. In [24], [25], address generators for 

memory-based FFTs are proposed. Finally, for 

continuous data flow, solutions to bit reversal on 

serial data were provided in [2]–[5], [11], [17]–[19], 

and solutions for parallel data are provided in [9], 

[10], [12]. 

 

A.Bit-Reversal Circuit for Single-Path Serial Data 

In [17], the bit reversal on serial data is calculated 

using a double buffering strategy. This consists of 

two memories of size where even and odd FFT 

output sequences are written alter- natively in the 

memories. The bit reversal can also be calculated 

using a single memory of size . This is achieved 

by generating the memory address in natural and bit-

reversed order, alterna- tively for even and odd 

sequences [18]. The bit reversal circuit in 

[11] targets real-valued FFTs. Although the 

architectures in [11] are for parallel data, the bit 

reversal circuit only applies to serial data. For SDC 

FFT architectures, the output reordering can be 

calculated by using two memories of   addresses [3]–

[5]. Al- ternatively, the output reordering circuit can 

be integrated with the last stage of the FFT 

architecture [3]–[5]. Finally, in [19],  a novel circuit 

for calculating bit reversal on serial data is pro- 

posed. The circuit consists of cascaded buffers and 

multiplexers, which can flexibly convert the bit-

reversed output for common FFT radices, including 

radix-2,  ,  radix-4,  and   radix-8. This approach 

provides the optimum circuits for bit reversal on 

serial data with minimum memory space. 

 

B. Bit-reversal Circuits for Parallel Data 

For parallel pipelined FFTs, only few works in the 

literature propose solutions to reorder the output data 

in parallel FFT ar- chitectures [9], [10], [12]. In [9], a 

bit-reversal circuit for 8-par- allel data is proposed. 

For an -point FFT, this circuit requires an -address 

memory for each parallel stream. In [10], the out- 

puts of the FFT are provided in an order different to 

bit-reversal. Thus, its reordering circuit is specific for 

the FFT architecture it proposed, but not for other 

MDC and MDF FFT architectures. Finally, [12] 

presents parallel   MDC    FFT     architectures. It 

also discusses the possibility of reordering the bit-

reversed outputs by using a total memory of. 

However, as the paper focuses on the FFT 

architectures, the bit reversal cir- cuit is not 

described. 

 

III.PROBLEM FORMULATION OF PARALLEL 

BIT-REVERSAL CIRCUIT 

 

Given an-point discrete Fourier transform (DFT): 
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IV.PROPOSED PARALLEL BIT REVERSAL 

CIRCUIT 

 

I.  Based on previous discussion, a new parallel bit 

reversal cir-cuit for parallel pipelined FFT 

processors is proposed. As shown in Fig. 3, the 

architecture supports continuous-flow operation 

and calculates the bit reversals on parallel 

inputs. The ar- chitecture is composed of input 

and output commutators, two groups of memory 

banks, and one controller. The Write Com- 

mutator, denoted as CMT_WR, plays the role of 

switching FFT processor outputs to proper 

memory banks according to   a pre-defined 

switching mechanism, which will be explained 

later. The Read Commutator, denoted as 

CMT_RD, helps to switch the memory banks’ 

output to proper output paths. The memory is 

partitioned into two single-port memory groups, 

A and  B, each containing memory banks. 

Furthermore, each memory bank stores data 

samples, leading to a total memory size Between 

the memory and the Read Commu- tator, 

multiplexers are used to select the memory 

groups. Fi- nally, the control block generates the 

memory addresses for 

 

Fig. 3. Proposed parallel bit-reversal circuit. 

read/write operations in each clock cycle. In addition, 

it also generates the control signals for commutators. 

 

A.  Switching Mechanism 

The switching mechanism is based on the idea that 

the par- allel inputs should be written into different 

banks. Likewise, the parallel outputs must be read 

from different banks. In  order to guarantee this, a 

switching mechanism is devised as follows. The 

switching patterns of write commutator for 4-par- 

allel and 8-parallel paths are shown in Fig. 4(a) and 

(b), respec- tively. Under switching pattern , the 

destination bank index  for output from path , given a 

-parallel architecture can be derived through modulo 

operation over . 

(2) 

For example, consider the structure of 4-parallel 

paths, when switching pattern is 3, the path 2 output 

will be written to memory bank 1, i.e., due to the 

operation of mod . As shown in Fig. 2, 

the adjacent           s ina set will be stored in 

different memory banks by changing the switching 

patterns in every (i.e.,) cycles. The switching pattern 
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is arranged as, which follows the bit-reverse form of -

bit binary representation. Hence, the switching 

pattern at clock cycle can be derived as: 

   (3) 

where     is the floor function. Although other 

switching pat- terns are feasible, the proposed pattern 

is much easier for overall design according to our 

extensive experiments. The commutator CMT_RD 

operates in a similar way to CMT_WR, except the 

difference that it is to switch the output from memory 

bank to proper output path based on the following 

formula: 

  (4) 

For general and , the detailed Write Commutator and 

Read Commutator architectures are shown in Fig. 

5(a) and Fig. 5(b), respectively. 

 

B.  General Scheduling Rule for Read/Write 

Operations 

To access the two memory groups efficiently under 

contin- uous-flow FFT operation, the selection of 

memory group for write or read operations at each 

clock cycle should be well 

 
Fig. 4. Switching patterns of the proposed write 

commutator (a) 4-parallel case 

(b) 8-parallel case. 

 Fig. 5. Commutator architectures (a) CMT_WR (b) 

CMT_RD. 

 

scheduled. The proposed scheduling mechanism can 

be sum- marized as two types for all power-of-2 FFT 

lengths, depending on      and        . Let, 

and denote as  or , if it is 

an even integer or odd integer, respec- tively, where 

is an integer. The memory write/read scheduling of 

two memory groups for even-value is shown in Fig. 

6(a), while the scheduling mechanism for odd-value 

is shown in Fig. 6(b). Without loss of generality, FFT 

output from different symbols are assumed for 

continuous-flow operation and each symbol period     

is equal to , because samples are gen- erated per 

clock cycle. First, for the first case, in the first  

clock cycles, the permuted data after write 

commutator are written into memory group A, and 

then followed by the data writing into memory group 

B in the next   clock cycles. Such sched- uling will 

be repeated periodically. During the last  clock cy- 

cles of symbol 1 period, the controller will start the 

FFT output process by reading data from memory 

group A in natural order, i.e., start from 

. The released memory space will 

then be available for storing the permuted FFT output 

of the 
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Fig. 6. General schedule mechanism for write/read 

operations (a) when is even (b) when is odd. 

 

second symbol after   clock cycles. Those 

procedures will be applied to memory group B 

similarly. For the case of odd , in the first   clock 

cycles, the permuted data after write commu- tator 

are written into memory group A, and then followed 

by the data writing into memory group B in the next 

 clock cycles. Similarly, the controller will start 

the read process in clock cycle  of 

symbol 1. The released memory locations will be 

reused by the next symbol  clock cycles later. 

With the above seamless scheduling, the two groups 

of memory banks act as cycle-based ping-pong 

buffers, instead of conventional symbol-based ping-

pong buffers. Hence, the memory space can be 

utilized very efficiently with smaller single-port 

memory of size , as compared with conventional 

designs with larger memories. 

C.  Address Generations 

The write/read address generation for the proposed 

parallel bit-reversal circuit is very simple and regular. 

Based on the pre- vious discussion, address 

generation can be derived based on  a cycle counter          

. For FFT length    ,    counts from 0 toAssume 

that the counter value is represented in-bit binary 

form, as  , where, are defined in 

Section III. The write address generation differs for 

odd and even symbols. Assuming symbol is counted 

from 1, then for odd symbols, the permuted data after 

write commutator will be written into each memory 

banks of group A or group B starting from address 0, 

and incremented by 1 for each following write 

operations on that group. By referring to the 

read/write scheduling timing diagram shown in Fig. 

6, the write address of memory bank for either group 

A or group B in an odd-symbol period can be 

represented as 

            (5) 

In contrast, for even symbols, the permuted  data  

after  write commutator will be written into the 

locations of their bit-reversed counterparts in 

previous symbol. Hence, the ad- dresses for an even 

symbol can be derived by first computing the  

addresses  of  their  counterparts  in  the  previous  

symbol, 

 
Fig. 7. Write address generation: (a) odd symbol, (b) 

even symbol. 



© August 2017 | IJIRT | Volume 4 Issue 3 | ISSN: 2349-6002 
 

IJIRT 144769 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  529 

 

Fig. 8. Example of 8-parallel 128-point FFT. (a) 

output sequences from FFT processor (b) permuted 

sequences after commutator CMT_WR (c) the 

scheduling of write/read operations (d) the 

distributions of in memory banks after the 15th 

cycle (e) the distributions of in memory banks 

after the 31th cycle. 
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Fig. 9. Example of 8-parallel 256-point FFT (a) original sequences from FFT processor (b) permuted sequences after 

commutator CMT_WR (c) the scheduling of write/read operations (d) the distribution of   in eight memory 

banks after the 31th cycle (e) the scheduling of   in eight memory banks after the 63th cycle. 

 

 

Fig. 10. An example of failed scheduling approach for 8-parallel 256-point FFT. 
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ago. The distribution of all  s of symbol 1 in the 

two memory groups after clock cycle 31 is shown in 

Fig. 9(d), while the distribution of all  s of 

symbol 2 after clock cycle 63 is shown in Fig. 9(e). 

Obviously, there are other possible scheduling 

approaches, for example, the scheduling shown in 

Fig. 10, where the first two output sets are written   to 

memory group A, followed by two output sets written 

into group B. Under this arrangement, read 

operations should be scheduled for group A in clock 

cycles 30 and 31. However,  was stored in group 

B at clock cycle 2. It means that one should read  

  from group B in clock 31, which violates the 

pre-scheduled write operation of group B in clock 

cycle 31, because single-port memory is assumed. 

Therefore, such scheduling is not allowed. 

 

V.IMPLEMENTATIONS AND 

COMPARISONS WITH EXISTING WORKS 

 

The proposed parallel bit-reversal architecture can 

support general power-of-2 FFT lengths. To verify its 

correctness for 
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column shows whether those designs support 

continuous-flow operations and variable FFT length 

or not. 

 
in [12] calculates the bit reversal for parallel data 

using approx. irately the same memory as the 

proposed approach. However, the detail of the bit-

reversal circuit that carries out the reordering is not 

described. As such, the proposed design is the first 

cir- cuit that calculates the bit reversal algorithm for 

parallel data using only a total memory size of words, 

and in particular, only single-port RAM is used, 

instead of two-port RAM adopted by all the 

compared designs. Take 8-parallel case for example, 

the area comparisons between a single-port 32-bit 

RAM and a two-port 32-bit RAM under different 

FFT sizes for both 90-nm 

 

TABLE II MEMORY AREA COMPARISONS FOR 

DIFFERENT FFT SIZES USING SINGLE-PORT 

RAM AND TWO-PORT RAM 

 
and 55-nm processes are listed in Table II. Since no 

two-port synchronous SRAM are provided in our 

memory compiler tool, single-port Register File and 

two-port Register File are chosen for comparisons. 

For each FFT size, in addition to the total re- quired 

area data, the table also shows the area ratio (in per- 

centage) of the single-port RAM over the two-port 

RAM, where the two-port RAM is set as 100%. As 

shown, a larger FFT size has better area reduction 

ratio than a smaller FFT size, which can be up 50%, 

while at least around 30% area reduction can be 

obtained for 2048-point FFT. However, for FFT sizes 

smaller than or equal to 1024, the area reduction 

ratios will be lower than that of 2048, because now 

the depth of each memory bank is considerably small, 

i.e., only 64 for each single-port bank of a 1024-point 

FFT. In other words, flip-flop registers are preferred 

to memory macros in those cases. 

 

VI.CONCLUSION 

 

In this work, a new parallel bit-reversal circuit is 

proposed for parallel MDF and MDC pipelined FFT 

processors. The proposed architecture is cost-

effective because only single-port RAM of total size 

is required for  -point continuous-flow  FFT. Besides, 

the addressing scheme is simple and regular for all 

power-of-2 FFT lengths, and it supports variable 

length processing. For future work, it is a very 

challenging task to further improve the proposed 

architectures so that the required memory space can 

be less than   . In addition, generalization of the 

proposed design techniques to MIMO FFTs with very 

high throughput is also a good research direction. 
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