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Abstract- Bit-reversal is an essential part of the fast
Fourier transform. However, compared to the amount
of works on FFT architectures, much fewer works are
dedicated to bit-reversal circuits until recent years. In
this brief, the minimum latency and memory required
for calculating the bit-reversal of continuous-flow
parallel data are formulated. The proposed circuit is
simple and efficient for reordering the output samples
of parallel pipelined FFT processors. The proposed
approach can be Implemented using Verilog HDL and
Simulated by Modelsim 6.4 c. Finally it“s synthesized
by Xilinx tool.

Index Terms- Bit-reversal circuit, fast Fourier
transform (FFT), MDC, MDF, natural-order FFT
output.

I. INTRODUCTION

FAST FOURIER transform (FFT) is widely used in
var- ious signal processing applications, such as
spectrum analysis, image and video signal
processing, and communi- cation systems. Over the
past decades, various FFT hardware architectures
have been investigated, including pipelined FFT
architectures and memory-based FFT architectures.
Pipelined FFTs include single-path delay feedback
(SDF) [1], [2], single-path delay commutator (SDC)
[3]-[5], multi-path delay feedback (MDF) [6]-[8],
and multi-path delay commutator (MDC) [9]-[12]
architectures. They have the advantage of high
throughput, but demand high area cost especially for
long-length FFTs. In contrast, memory-based FFT
architec- tures usually have low area cost, because
smaller numbers of butterfly processing elements
(PE) are adopted to sequentially execute all the
butterfly operations. Accordingly, their through-

puts are often limited.

Recently, parallel pipelined FFT architectures [6]—
[13] were proposed to enhance throughput by
increasing parallelism of the whole architecture. As
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such, they can meet the demand of extremely high
data rates of current state-of-art wireless com-
munication systems, such as UWB (Ultra Wideband),
IEEE 802.15.3c, or IEEE 802.1lac/ad. Two major
function blocks should be designed for pipelined FFT
processors, one is the FFT architecture itself and the
other one is the bit-reversal circuit. The function of
the bit-reversal circuit is to convert the non-nat- ural
output order of the FFT architecture to natural order.
This  feature is  especially important for
communication systems, because FFT processors are
usually followed by frequency-do- main equalizer
which requires timely and natural-order input data.
However, much fewer works are dedicated to bit-
reversal circuit design in the literature until recent
years, compared to the amount of works on FFT
architecture designs. For general memory-based FFT
architectures, there are memory addressing schemes
[14]-[16], which facilitate natural-order FFT out-
puts. For pipelined FFT, bit-reversal circuits must
support  continuous-flow processing for the
consideration of seamless generation of FFT outputs,
due to contiguous inputs. Several works in the
literature [2]-[5], [17]-[19], proposed bit-reversal
circuits for single-path pipelined FFT architectures.
For parallel pipelined FFTs, the design of the
reordering circuits is even more challenging as it
requires reordering multiple concurrent FFT outputs
simultaneously. Thus, only a few works in the
literature discuss this problem [9], [10], [12]. Among
them, reordering circuits for parallel data are
described in [9], [10]. The circuit proposed in [9]
calculates the bit reversal for par- allel output data,
but its hardware complexity is high. On the other
hand, the outputs of FFTs in [10] are in an order
different from bit reversal, and therefore the
reordering circuit is only applicable to this specific
order.
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This work proposes a new bit-reversal circuit for
parallel data that can be used for both MDC and
MDF FFT architectures. The main contributions of
this work are twofold. First, it is the first parallel bit-
reversal circuit based on single-port memory. Be-
sides, it is area-efficient, as the total memory sizei,
where is FFT length. Second, the proposed reordering
mechanism

is regular and flexible for supporting general power-
of-2 FFT sizes, as well as variable-length bit reversal.
The rest of this article is organized as follows. In
Section I, existing bit-re- versal circuits are
reviewed. In Section Ill, the design problem for a
parallel bit reversal circuit is formulated. In Section
IV, the proposed bit-reversal circuit is presented.
Implementations and comparisons with existing bit
reversal circuits are made in Section V, followed by
conclusions in Section VI.

ILREVIEW OF EXISTING BIT REVERSAL
CIRCUITS

There are various bit-reversal addressing schemes
proposed in the literature. For non-continuous data
flow, the schemes proposed in [20]-[23] focus on
calculating the bit reversal on data stored in a
memory. In [24], [25], address generators for
memory-based FFTs are proposed. Finally, for
continuous data flow, solutions to bit reversal on
serial data were provided in [2]-[5], [11], [17]-[19],
and solutions for parallel data are provided in [9],
[10], [12].

A Bit-Reversal Circuit for Single-Path Serial Data

In [17], the bit reversal on serial data is calculated
using a double buffering strategy. This consists of
two memories of size where even and odd FFT
output sequences are written alter- natively in the
memories. The bit reversal can also be calculated
using a single memory of size . This is achieved
by generating the memory address in natural and bit-
reversed order, alterna- tively for even and odd
sequences [18]. The bit reversal circuit in

[11] targets real-valued FFTs. Although the
architectures in [11] are for parallel data, the bit
reversal circuit only applies to serial data. For SDC
FFT architectures, the output reordering can be
calculated by using two memories of addresses [3]-
[5]. Al- ternatively, the output reordering circuit can
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be integrated with the last stage of the FFT
architecture [3]-[5]. Finally, in [19], a novel circuit
for calculating bit reversal on serial data is pro-
posed. The circuit consists of cascaded buffers and
multiplexers, which can flexibly convert the bit-
reversed output for common FFT radices, including
radix-2, , radix4, and radix-8. This approach
provides the optimum circuits for bit reversal on
serial data with minimum memory space.

B. Bit-reversal Circuits for Parallel Data

For parallel pipelined FFTs, only few works in the
literature propose solutions to reorder the output data
in parallel FFT ar- chitectures [9], [10], [12]. In [9], a
bit-reversal circuit for 8-par- allel data is proposed.
For an -point FFT, this circuit requires an -address
memory for each parallel stream. In [10], the out-
puts of the FFT are provided in an order different to
bit-reversal. Thus, its reordering circuit is specific for
the FFT architecture it proposed, but not for other
MDC and MDF FFT architectures. Finally, [12]
presents parallel MDC  FFT architectures. It
also discusses the possibility of reordering the bit-
reversed outputs by using a total memory of.
However, as the paper focuses on the FFT
architectures, the bit reversal cir- cuit is not
described.

I1LPROBLEM FORMULATION OF PARALLEL
BIT-REVERSAL CIRCUIT

Given an-point discrete Fourier transform (DFT):
Nl

XK= Y amWy, k=0 N-1 ()

where 210 and X)) denote the mput and output of the DFT
respectively,and 11')" = ¢ 77 which s called
twiddle factor. For efficient implementation of FFT operations,
2" FFT algorithms are often applied. Besides, parallel pipelined
a1- chitectures are often adopted to realize the " FFT algo-
nthms [6]-[8], because they can offer ugher throughput than
SDF or SDC pipelned archutectures. As shownn Fig. 1, a
pipelned FFT processor accepts P-paralle] natural-order FFT
input, and generates P-paralle] bit-reversed FFT output, where
i the parallehsm and [1i(4) 15 the bitreverse representa-
tion of mdex; First, to convert parallel FFT output to natural-
order FFT output, a memory group partiionsd mto p memory
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banksis required. Denote the m-bit binary representation of £
ashy, koo by where o = logy N, the bitreversed rep-
resentation of /v is shown in Fg. 2. In the figure, thelEB

bits represent the pathindex, and i — ¢ MSB bits denote time

mdex 1, where g = lc;;:: Poandi € {0, 1.....(N/F) - 1},
which denotes the time index. Since each set of [ adjacant
Niblae, {X(POX(PEH1)..L ViPt+ 17— 1) ) differ

only in bits {4 &0k, |, their output pathindicesare
the same. Therefore, they will be savedto the same memory

bank if FFT outputs from I* paths (i.e, path0 ~ path " —
1) are directly wntten to the comespondng'memeory banks
(i.e., bank 0 ~ bank /* — 1). This implies that it is impossible
to provide Fparallel natural-order outputs to the next-stage
functional block due to conflicting memory accesses. There-
fore, to avoid memory conflict, a suitable reorderng mecha-
mism should be designed so that output from each path can be
switched to proper memory bank. Second, considenng contin-
uous-flow FFT operation, generally two groups of memory are
required for the purpose of acting as ping-pong buffers during
each FFT output period (of v/ 1" clock cycles). However, such
architecture has the drawback ofinefficient memory utilization,

because memeory spacereleased after eachreadout cannot be ip-
mediately accessed duning that outputperiod. Thus, the problan
of caleulating the bit reversal of the FFT outputs translates mto

finding an efficient strategy to access theffnemorybanks.

IVPROPOSED PARALLEL BIT REVERSAL
CIRCUIT

|. Based on; previous giscussion, a new parallel bit
reversal cir-cuit for pargllel pipelined FFT
processors is proposed. As shown in Fig. 3, the
architecture supports continuous-flow operation
and calculates the bit reversals on parallel
inputs. The ar- chitecture is composed of input
and output commutators, two groups of memory
banks, and one controller. The Write Com-
mutator, denoted as CMT_WR, plays the role of
switching FFT processor outputs to proper
memory banks according to a pre-defined
switching mechanism, which will be explained
later. The Read Commutator, denoted as
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CMT_RD, helps to switch the memory  banks’
output to proper output paths. The memory is
partitioned into two single-port memory groups,
A and B, each containing memory  banks.
Furthermore, each memory bank stores data

samples, leading to a total memory size Between
the memory and the Read Commu- tator,
multiplexers are used to select the memory
groups. Fi- nally, the control block generates the

memory addresses for
Parallel bit-reversal circuit

( N
Memory group A
(single-port RAM)

nd_group_sel

bit-reversed

order = Write
Commutator
(CMT WR)
wr_group_sel

MmO | ”
{ | pipelined FFT [ | |

—»|  Processors

A Read
Commutator
(CMT_RD)

4

.

Switeh for
CMT_WR
(from Controller)

Switeh for
CMT_RD
(from Controller)

P-parallel natural-order FFT output

P-parallel natural-order FFT input

Memory group B
(single-port RAM)

\
Fig. 3. Proposed parallel bit-reversal circuit.
read/write operations in each clock cycle. In addition,
it also generates the control signals for commutators.

J

A. Switching Mechanism

The switching mechanism is based on the idea that
the par- allel inputs should be written into different
banks. Likewise, the parallel outputs must be read
from different banks. In order to guarantee this, a
switching mechanism is devised as follows. The
switching patterns of write commutator for 4-par-
allel and 8-parallel paths are shown in Fig. 4(a) and
(b), respec- tively. Under switching pattern , the
destination bank index for output frompath , given a
-parallel architecture can be derived through modulo
operation over .

Destination bank(i.J) = mod ((i + 1), P) @

For example, consider the structure of 4-parallel
paths, when switching pattern is 3, the path 2 output
will be written to memory bank 1, ie., due to the
operation of mod (35t 3-4) = 1. As shown in Fig. 2,
the adjacenthJVi£17:{'2]r) s ina set will be stored in
different ¥nemory banks by changing the switching
patterns in every (i.e.,) cycles. The switching pattern
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is arranged as, which follows the bit-reverse formof -
bit binary representation. Hence, the switching
pattern at clock cycle can be derived as:

i
Ji nr T
() ¥ ({\.;J) 3

where [ is the floor function. Although other
switching pat- terns are feasible, the proposed pattern
is much easier for overall design according to our
extensive experiments. The commutator CMT_E(D
operates in a similar way to CMT_WR, except the
difference that it is to switch the output from memory
bank to proper output path based on the following
formula:

Destination path(b, J) = mod (b4 P = J).P) @

For general and , the detailed Write Commutator and
Re a Conﬁ]utator architectures are shown in Fig.
5(a) and Fig. 5(b), respectively.

B. General Scheduling Rule for Read/Write
Operations
To access the two memory groups efficiently under
contin- uous-flow FFT operation, the selection of
memory group for write or read operations at each
clock cycle should be well

J=0 J=1

[ O - 3 /p—» °->
T S S—— o> —....... ::,"'o-b : "D-P
i rnaenmened P ‘.‘:}.- o> -”
i O il Ty o> “‘0—»

RXAES2IRARARRAE:
SRR LAY

TR L
SRRy

=

Fig. 4. Switching patterns of the proposed write
commutator (a) 4-parallel case
(b) 8-parallel case.
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Fig. 5. Commutator architectures (@) CMT_WR (b)

CMT_RD.

scheduled. The proposed scheduling mechanism can
be sum- marized as two types for all power-of-2 FFT
len tﬁ’s dependlng on <= and & | Let,
a = “t l( N/2P%)and Benote as = 20 or , if it is
an even mteger or odd integer, rgspec- tively, where
is an integer. The memory write/read schgduling of
two memory groups for even-value is shown in Fig.
6(a), while the scheduling mechanism for odd-value
is shown in Fig. 6(b). Without loss of%enerality, FFT
output from different symbols are assumed for
continuous-flow operation and each symbol period
is equal to i\‘"/f’, because samples are gen- erated per
clock cycle. First, for the first case, in the first 27
clock cycles, the permuted data after write
commutator are written into memory group A, and
then followed by the data writing into memory group
B in the next2”? clock cycles. Such sched- uling will
be repeated periodically. During the last2” clock cy-
cles of symbol 1 period, the controller will start the
FFT output process by reading data from memory
group A in natural order, ie., start from
X(0) ~ X(F = 1) The released memory space will
then be available for storing the permuted FFT output
of the
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Fig. 6. General schedule mechanism for write/read
operations (a) when is even (b) when is odd.

second symbol after 27  clock cycles. Those
procedures will be applied to memory group, B
similarly. For the case of odd , in the first 2% clock
cycles, the permuted data after write commu- tator
are written into memory group A, and then followed
by the data writing into memory group B in the next
2741 clock cycles. Similarly, the controller will start
the read process in clock cycle N/P—20+D) of
symbol 1. The released memory locations will be
reused by the next symbol 2+ clock cycles later.
With the above seamless scheduling, the two groups
of memory banks act as cycle-based ping-po‘n'ti:]'
buffers, instead of conventional symbol-based ping-
pong buffers. Hence, the memory space can be
utilized very efficiently with smaller single-port
memory ofsize , as compared with conventional
designs with larger memories.
C. Address Generations

The write/read address generation for the proposedy
parallel bit-reversal circuit is very simple and regular.
Based on the pre- vious discussion, address
generation’ ¢an be derived bjséa 6n’ & cycle counter
. For FFT length <+ <> counts from 0 toAssume
that the counter value is represented in-bit binary
form, as (Cm—q W-----“l‘-’u), where, are defined in
Sectioh I1l. The write address generation differs for
odd and even symbols. Assuming symbol is counted
from 1, then for odd symbols, the permuted data after
write commutator will be written into each memory
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banks of group A or group B starting fromaddress 0,
and incremented by 1 for each following write
operations on that group. By referring to the
read/write scheduling timing diagram shown in Fig.
6, the write address of memory bank for either group
A or group B in an odd-symbol period can be

represented as

A(h)

ot = (Cm—g—1ee v Cog1. €31, .., C0)

®)
In contrast, for even symbols, the permuted data
after write commutator will be written into the

locations of their bit-reversed counterparts in

previous symbol. Hence, the ad- dresses for an even
symbol can be derived by first computing the
in the previous

addresses of their counterparts
symbol,

ent_e = (€11€1009C 8- +-C1C0)

£

\

33333333
EEEEES LS
Terseoee
8 SRR
88 88583

1024
CalaTlaTlal 2
elaTlaTaTlal—
[aTaTaTlalaTal .
Glalalalalalol—e] o
sTaTalaTaTaralal—e|

Fig. 7. Write address generation: (a) odd symbol, (b)
even symbol.
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Fig. 8. BExample of 8-parallel 128-point FFT. (a) the write address of memory banltin the even-symbol period
output sequences from FFT processor (b) permuted can be represented as
sequences after commutator CMT_WR (c) the A = (egey.. .., (I T R PR L |
scheduling of write/read operations (d) the +BR(mod(J =b= P.P)) x 2" (6)
distributions of _m mmow bank§ after the 15th The control signal wr_group_sel selects a specific memory
cycle (e) the distributions of in memory banks group to wiite in each clock cyele, according to the following

after the 31th cycle. rule:

. . . = fi Fi -
followed by switching those addresses to sutable memory we_group.sel = {' e, fwmodd
barks by a commutator. The swatchmg mecharismofthecom- The data is written to memory group B when wr_goup_sel

. - : 15 1, else it is wiitten to memory group A. For demonstration,
mutator here is the same as the wite commutator. Smee the the write address generations are derived for 8 parallel archi.

output after the wate commutator from thep, ...y 4h tecture and realized, as shown m Fig. 7, which can handle
FFT lengths ranging from 128 to 32768 pomts.. In the figure,

parallel pathis the (e oooegtopy 1 i )l output (1161064 .- cy¢ar1cy) is the 12-bit binary representation of
fT.h t 5 b 1 'h J - I:l| ]i cnt s @u;ilﬁg 7(a) and Fig. 7(b) showthe wnte address of each
OI € CUIel SYmool, WOEE fiy-1..... P © R E memory bank for odd and even symbols, respectively. Since

its btreversed EUUI]T.EIPEH m the pl’E‘r'iULlE\ S‘r'mhﬂl haz the read address is just the delayed copy ofthe wiite address, its
denvationis onutted here. The final address for each group can

llICIEI |:J'J||]]I| IIJ'.' L q ]I BESEd o1 [ ) Lhe be denved by multiplexing the write address and read address
. because single-port EAM iz used. In the following, several
ge-p g
mm‘i dﬂtﬂ “f]]l bE T‘r'ﬂtT.Eﬂ 10 memory hEIlL. T‘f'lﬂ'l design examples will be provided for better understanding of
b‘gma ndex [I]Wl + HHI'I”I el lll J")} vhere the proposed switching and scheduling mechamnisms.
Io= (e 0oty oty 1| 11t output path How- D. 8-Parallel FFT Examples

. 1) 128-Foint FFT: Without loss of generality, consider the
ever, ./ 1s also the switching pattem of cument symbal, Hence, example of 8 parallel 128-point FFT with continuous flow

r Hi=if
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Fig. 9. Bxample of 8-parallel 256-point FFT (a) original sequences from FFT processor (b) permuted sequences after
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Operation. The output sequence \ (/] from FFT processor for
two contiguous symbols are shown m Fig. 8(a), Commutator
CMT_WE will switch the sequence every two clock iz,
128/(8%) reyelgs. The switching pattem is
§0.4,2.,6,1.3,3.7}, which repeats again for the second symbaol.
The permuted sequence after CMT_WE iz shown m Hg
8b). The scheduling of wimte'read operations is shown i,
Fg. 8(c). At clock cycle 13, the last output set

IATOL X CT) NS of symbol 1 is written into
memory group B, meanwhile the first natural-order output set
{0 X1 X2, X03) X () X (5). X (6). X(T)}

of symbol 1 is read from memory group A; and those
memory space can be released for the meoming symbol 2
later. Therefore, at clock cycle 16, the first output set
L0, X6, N U520 X(96)., X(16), X{80), X{I=L.X0(112)}
of symbeol 2 iz wntten mto those comesponding released
locations in memory group A. Similar procedures are applied
to all the other output \(L) sequences of symbol 2. Fg, 8(d)
shows the distribution of gll_\ (£)s of symbel 1 in the two
memory groups nght after clock cycle 13, while Fg 2(e)
shows the distribution of all X' (45 of symbel 2 m the memory
groups after clock cyele 31. It iz _interesting to note that
zach  A(f) of symbel 2 is stored in the location of its bit-
reversed counterpart of symbaol 1.

2} B-FParallel 236-Poini FFI: Similarly, the bitreversed
output X (1) sequencesof 236-pomt FFT are shownimFig. 9(a).
CMT WE switches those sequences every four clock cycles
according to the same switching pattem. The penmuted se-
quences after CMT_WE. are shown in Fig. 9(b). However,
the scheduling of wnte'read operation is different from that
of 8-parallel 128-point FFT. In clock eyele 0, the first output
set {N(0)N(I28)..  X(22)) of symbol 1 is written into
memory group A, followed by the memory wite of the 2nd
and the 3rd sets of symibol 1 into memory goup B eyele 1
and cycle 2, respectively. Then the 4th and the 5th set wall be
written to group A again, and these procedures are applied to
the following output sequences again. Inclock 30, the first pat-
wral-order output set { (0] X(1]..... X(7)} of symbol 1 is
scheduledto beread out frommemeory group A, followed by the
readout of the nd set (1e., { \(%), X(Y)...... \(15]}) andthe
Srdset(le, [ N(16). N(17)..... X(23)}) frommemory group
B in clock cyele 31 and clock cycle 32, respectively. Then the
read operations are switched back to memory goup A agam.
In clock cycle 32, the first \ (£ set of symbel 2 amves which
is stored in the released space set (X (0. X(1)...... X(7)} of
symbal 1 previously. This procedure is agam applied to the
following mcoming sequences, 1e. those sequences will be
witten into the released memory locations two clock cycles

ago. The distribution of all X(F)s of symbol 1in the
two memory groups after clock cycle 31 is shown in
Fig. 9(d), while the distribution of all ¥ (¥)s of
symbol 2 after clock cycle 63 is shown in Fig. 9(e).
Obviously, there are other possible scheduling
approaches, for example, the scheduling shown in
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Fig. 10, where the first two output sets are written to
memory group A, followed by two output sets written
into group B. Under this arrangement, read
operations should be scheduled for group A in clock

cycles 30 and 31. However, X (8) was stored in group
B at clock cycle 2. It means that one should read
X(8) from group B in clock 31, which violates the
pre-scheduled write operation of group B in clock
cycle 31, because single-port memory is assumed.
Therefore, such scheduling is not allowed.

V.IMPLEMENTATIONS AND
COMPARISONS WITH EXISTING WORKS

The proposed parallel bit-reversal architecture can
support general power-of-2 FFT lengths. To verify its

correctness for

contimons-flow operation, the simulation pattems of bit-re-
versed FFT output are generated by Matlab first, and then
loaded as reversal circuit’s mput when simulation begns.
Sunulation results venfy that the proposed scheme s cor-
rect for FET lengths ranging from 128 to 32768 points for 2-
parallel, 4-parallel, and Z-parallel architectures. Based on
scheduling shown m Fig. 6, the latency fornatural-order output
(NP =20 4 1 and (N/P) = 2070 1) dlack eyeles for
evenn and oddn |, respectively. The throughput iz P samples
per clock cycle. The 8-paralle]l realization of the proposed bit-
reversal circuit, which supports 128 to  32763-pomt FFT, 1=
accomphshed with TSMC-90 nm process. Its memory umit 15
realized with 16 single-port SEAM macros with data width of
32 bits. The pre-layout gatelevel synthesis results show that
the whole cell area is 1905852 gy, including logic part area
of 11641 yun® and memory area of 1884211 . It is
observedthatthelogic part areais relatively small comparedto
the memory area. Its power consumptionis 2.017 W when it
is operated at 320 MHz clock frequency.

The .compan'sons of existing bit-reversal circuits and their as
zoclated features are shown in Table I. The first colurmn hsts the
circwits designed to calculate the bit reversal. The second
column lists the type of FFT architectures for which thev cal-
culate the bit reversal. The third cohmn shows the parallehsm
degree of each design. For SDF and SDC FFT architectures, the
reordering circuits only process serial data, whereas for MDC
and MDF FFT architectures the reordenng circuits handle gev-
gral parallel data simultaneously. The throyghput data shownin
the last column comesponds to their respective architectures.
Note that serial bitreversal circuit processes one sample per
clock cycle, whereas parallel ones process samples in parallel
per clock cycle. The fourth cohunn of the table shows the FFT
output pattem types presented to the reordenng circuits. Most of
the compared designs perfonm bit-reversal operation. However,
some of them do not expect data in bit-reversed order from the
FFT module, but m another specific order or pattem. Finally, the
fifth column indicates the sizes and types of the memones
neededto facilitate the reordering of data samples, and the sixth
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column shows whether those designs support
continuous-flow operations and variable FFT length
or not.

From Table I, 1t can be observed that the reordenng circwits
BHE] (1], [LTH19] are only for senal data, and not appl-
cable to parallel MDC and MDF FFTs. The works m [3}-{3]
propose modified SDC FFT arclutectures. Therr bit-reversal c-
cuits are merged with the last-stage butterfly wrut of FFT pro-
cessprs. The bit-reversal function 1z achieved with extra data
schedulmg. The bit-reversal crcwt m [17] requires memory size
of 2\In [11] the bt reversal for real-valued FFTs 15 calou..
lated, which 15 a specific order different to the bit-reversal m
conventional FFTs. In [13], the mmmum buffer and latency
requred toreorder the mput data are denved by mathematical
analysis. In [19], the bit-reversal cirewt 15 composed of smple
buffers and multiplexers. This work provides the optimum bit
reversal coewts deagns for semal data for radm-l, o
radix-4 and radix-§. In case of paralle] data, the works m [9],
[10],[12] target pipelined MDC FFT processors. Among them,
the work m [9] only targets the case of §-parallel data. Thisde-
sign is costly in terms of memory, asit requires a totalmemory
size of I+ V. The work m [10] presents a more efficient ap-
proach, as it requires shghtly more thatl memory wards by
using several sporadic small-size FIFOs. However, this desin
15 only suited for a specific FFT output order pattem, mstead of
bit-reversed FFT output pattem. Comparedto those works, the
proposed approachtargets FFT outputs of parallel data mbit-re-
versed order (not n other specific unconventional orders) and
uses only a total memory size ofV words. Another altemative
in [12] calculates the bit reversal for parallel data
using approx irately the same memory as the
proposed approach. However, the detail of the bit-
reversal circuit that carries out the reordering is not
described. As such, the proposed design is the first
cir- cuit that calculates the bit reversal algorithm for
parallel data using only a total memory size of words,
and in particular, only single-port RAM is used,
instead of two-port RAM adopted by all the
compared designs. Take 8-parallel case for example,
the area comparisons between a single-port 32-bit
RAM and a two-port 32-bit RAM under different
FFT sizes for both 90-nm

TABLE I MEMORY AREA COMPARISONS FOR

DIFFERENT FFT SIZES USING SINGLE-PORT
RAM AND TWO-PORT RAM
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and 55-nm processes are listed in Table Il. Since no
two-port synchronous SRAM are provided in our
memory compiler tool, single-port Register File and
two-port Register File are chosen for comparisons.
For each FFT size, in addition to the total re- quired
area data, the table also shows the area ratio (in per-
centage) of the single-port RAM over the two-port
RAM, where the two-port RAM is set as 100%. As
shown, a larger FFT size has better area reduction
ratio than a smaller FFT size, which can be up 50%,
while at least around 30% area reduction can be
obtained for 2048-point FFT. However, for FFT sizes
smaller than or equal to 1024, the area reduction
ratios will be lower than that of 2048, because now
the depth of each memory bank is considerably small,
i.e., only 64 for each single-port bank of a 1024-point
FFT. In other words, flip-flop registers are preferred
to memory macros in those cases.

VI.CONCLUSION

In this work, a new parallel bit-reversal circuit is
proposed for parallel MDF and MDC pipelined FFT
processors. The proposed architecture is cost-
effective because only single-port RAM of total size
is required for -point continuous-flow FFT. Besides,
the addressing scheme is simple and regular for all
power-of-2 FFT lengths, and it supports variable
length processing. For future work, it is a very
challenging task to further improve the proposed
architectures so that the required memory space can
be less than . In addition, generalization of the
proposed design techniques to MIMO FFTs with very
high throughput is also a good research direction.
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