
© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 54

Neural Intent Recognition for Question-Answering

System

Ajinkya Pradeep Indulkar
1
, Srivatsan Varadharajan

2
, Krishnamurthy Nayak

3

1, 3
Department of E&C, Manipal Institute of Technology, Manipal

2
Philips Lighting India Limited, Bangalore

Abstract- Conversational Agents, commonly known as

Chatbots, are a successful result of the collaboration of

Natural Language Processing (NLP) and Deep

Learning. Major Technology Giants like Google,

Amazon, Microsoft, etc. are heavily invested in

developing a sophisticated conversational agent which

can pass the Turing Test. There are various

methodologies which can be used to develop the various

components of such an agent from scratch. This paper

uses SQuAD, an open Question-Answering dataset, for

developing an Intent Recognition System for any

Question-Answering system. Inspired by Author-Topic

Modelling, a Title-Topic Modelling technique is used in

combination with various Deep Learning models to

train the Intent Recognition System, achieving an

accuracy of 88.36%.

Index Terms- Conversational Agents, Deep Learning,

Intent Recognition, Natural Language Processing,

Question-Answering System, Title-Topic Modelling.

1. INTRODUCTION

The origin of conversational agents can be traced

back to 1950 when Alan Turing, father of Computer

Science, published his first paper [1]. His question,

“Can Machines think?” ushered the world into the era

of Artificial Intelligence (AI) which began a plethora

of research to turn his question into reality.

Numerous sub-fields of AI like Machine Learning,

Computer Vision, and recently, Deep Learning have

seen more researchers committing themselves to

develop novel techniques in the respective fields.

The development of conversational agents falls under

the field of Natural Language Processing, which is an

area of research concerned with the understanding of

human (natural) languages by the machines. Similar

to Artificial Intelligence, its origin can also be traced

back to 1950s when Alan Turing proposed a criterion

for intelligence, known as the “Turing Test”.

A machine passes the test when a human is unable to

distinguish the machine‟s responses from that of a

human‟s.

ELIZA [2] was the first implementation of a human-

like dialog system, developed in 1960s. It worked on

a rule-based methodology. Since then, the number of

research papers published in this field is

overwhelming.

NLP Techniques like Dependency Parsing, Named

Entity Recognition, etc. are vital nowadays in the

development of the most sophisticated conversational

agent.

A. Motivation

The current scenario of the chatbot industry mainly

involves detecting the intent of a user utterance to the

conversational agent by extracting entities and using

classic machine learning algorithms such as Support

Vector Machines to develop a classifier for the pre-

defined intents. This is big step from the previous,

rule-based approach but still lacks the true AI

capabilities. Natural Languages are complex, and a

human can express an intent in more than one way.

To be able to understand such complexities can allow

any machine to pass the “Turing Test”.

This paper explores methodologies involved in

developing a Question-Answering system using the

concepts from NLP and Deep Learning.

The Neural Natural Language Understanding engine

uses Intent Recognition System to understand the

intents expressed by the user. For training the Intent

Recognition System, Topic Modelling techniques are

used to automatically label the training data, as the

original dataset is unlabeled.

The techniques used are modular, i.e. they can be

used individually in other systems according to the

researcher‟s requirement.

II. LITERATURE REVIEW

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 55

A. Word Embeddings

Word Embedding can be defined as a distributed

vector representation of words in a sentence or

document. It is a technique of projecting words onto

the vector space and this proves to be highly useful in

various NLP tasks like statistical language modelling,

machine translation, etc. The vectors of similar words

or phrases can be observed to be closer in the vector

space and these vectors represent the importance of a

word in a document.

This also helps in finding the semantic as well as

syntactic similarities between words and phrases.

Since 1986, there has been a great deal of research in

introducing new techniques of learning word

embeddings. There have been Neural Network

Language Model approaches, but this paper

implements the Log-Linear Model approach,

commonly called as Word2Vec [3].

Word2Vec is a log-linear model architecture which is

computationally-efficient, and a simple approach

compared to the neural network model in learning

vector representations of words or phrases in a

sentence in the training dataset.

There are 2 architectures of this model:

1. Continuous Bag-Of-Words (CBOW) Model

2. Continuous Skip-Gram (SG) Model

The Continuous Bag-Of-Words model predicts the

probability of a target word from the context in the

source sentence, whereas Skip-Gram model performs

the opposite task of predicting the context words

from a target word. The learning complexity of both

models are:

1. CBOW Model:

2. Skip-Gram Model:

Where, Q – Training Complexity, N – number of

previous words, D – Dimension of the projection

layer (N x D), V – size of the vocabulary, C –

maximum distance of words.

Figure 1: CBOW and Skip-Gram Model

Architectures [3]

Fig. 1 clearly describes the architecture of the CBOW

model and the Skip-Gram model as mentioned above.

It is observed that CBOW model works better than

Skip-Gram as it has the effect of smoothening over a

lot of the distributional information. Thus, the

CBOW model has been chosen for training the word

vectors on the source dataset.

While implementing the CBOW model, both the

input and target data are one-hot encoded, which is a

binary encoding technique where „1‟ represents the

presence of data and „0‟ represents the absence of it.

Both the layers are of the size [1 x V]. In this

architecture, there are 2 sets of weights, one between

the input layer and the hidden layer, and the other

between the hidden layer and the output layer. N has

been chosen as the size of the hidden layer. Thus, the

dimensions of the weights are [V x N] and [N x V]

respectively.

As seen in Fig. 2, The hidden layer uses a Linear

Activation function and the Output Layer uses a

Softmax function, a generalization of the logistic

function, which works on the Maximum Likelihood

(ML) principle of maximizing the probability of the

next word, wt, given a set of previous words, h. The

softmax function can be represented as:

∑

Where score (wt, h) calculates the compatibility of

word wt with the context h. We now train the model

by maximizing the log-likelihood on the training

dataset.

Figure 2: Diagrammatic Representation of CBOW

Model for multiple context words [4]

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 56

Thus, we maximize,

 ∑

Sub-sampling of most occurring words [4] in the

training dataset is useful as such words provide less

information than the rarely occurring words.

This technique thus improves the learning of the

word embeddings. The approach used can be

computed as follows:

 √

Where, P(wi) – Probability, f(wi) – frequency of word

wi, and t – a chosen threshold.

These word embeddings are later used in a Neural

Network Architecture designed for the Intent

Recognition System.

B. Topic Modelling

Topic Modelling is a method of categorizing a set of

documents into various topics. It is an unsupervised

technique and thus it is different from other rule-

based text mining approaches. The model observes

the collections of words in the document corpora and

clusters them into different topics. Evidently, this

Figure 3: Representation of LDA Topic Modelling

[5]

technique is mainly used for document clustering,

organization of large blocks of textual data and

information retrieval from unstructured text in the

dataset which can be used for feature selection.

There are many algorithms for Topic Modelling, but

the Latent Dirichlet Allocation (LDA) [5] technique

for Topic Modelling is found to be the most efficient

and accurate.

As evident from Fig. 3, LDA assumes the documents

to be produced from a mixture of latent topics. The

topics then generate words based on the probability

distribution. As LDA is a matrix factorization

technique, any corpus (collection of documents) in

the vector space can be represented as a Document-

Term matrix.

The Document-Term matrix is further converted to

lower dimensional matrices, M1 and M2, where M1

is the Document-Topic matrix and M2 is a Topic-

Term matrix. As these distributions are required to be

improved, the core concept of LDA plays an

important role. It uses sampling techniques to

improve the above matrices.

It iterates through each word w in every document d

and tries to adjust the current Topic-Word assignment

with a new assignment. A new topic k is assigned to

word w with a probability P which is a product of

two probabilities p1 and p2. For every topic, two

probabilities p1 and p2 are calculated.

 |

Where, p1 represents the proportion of words in

document d, currently assigned to topic t.

And,

 |

Where, p2 represents the proportion of assignments

to topic t over all documents that come from this

word w.

Figure 4: Graphical Model Representation of LDA

The current topic-word assignment is then updated

with a new topic whose probability is the product of

p1 and p2. In this step, the model assumes that all the

existing word-topic assignments except the current

word are correct. Essentially, this is the probability

that topic t generated word w, so it makes sense to

adjust the current word‟s topic with new probability.

After several iterations, a stable state is achieved

where the document-topic and topic-term

distributions are optimal leading to the convergence

point of LDA.

This concept can be understood mathematically and

as LDA is a generative process, the following

assumptions can be made:

1. Choose N ~ Poisson(ξ)

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 57

2. Choose θ ~ Dir(α)

3. For every N words ,

a. Choose a Topic ~ Multinomial(θ)

b. Choose a word from | , where p is

a multinomial probability under the condition of

the topic .

Where, the Dirichlet Distribution has dimensionality

equal to which is also the dimensionality of . The

matrix β with a dimension of acts as a

parameter for the word probabilities, where

 | .

As seen in Fig. 4, with α and β parameters and M

documents in the corpora, the joint topic distribution

for a collection of N topics z and N words w can be

formulated as,

 |

 | ∏ | |

C. Title-Topic Modelling

LDA Topic Modelling is a very efficient technique

for extracting topics from documents but when

documents belong to certain category or include

overlapping titles, it is possible to have a less

accurate topic modelling has documents can fall

under wrong topics.

Figure 5: (a) LDA Topic Model (b) Author Model (c)

Author-Topic Model [6]

Inspired by the Author-Topic Model [6], this paper

considers the generalized titles as a metaphorical

author of the documents.

As observed in Fig. 5(c), for D documents having A

authors, T topics are extracted using the LDA as the

foundation to calculate author-topic distributions

alongside topic-word and document-topic

distributions.

Hence, the various authors (or more specifically

titles) are categorized under the extracted topics.

Hence, this paper uses a modified version of the

Author-Topic Modelling, called Title-Topic

Modelling, to extract topics for the various titles of

the training dataset.

D. Recurrent Neural Networks

Over years, Artificial Neural Networks have

outperformed other learning algorithms due to its

ability to learn more complex and high-level features

from data of all kinds using hidden layers which

improve the accuracy of a prediction or classification

model.

But one major limitation of such neural networks is

that they can‟t understand sequences, i.e. how the

current state is affected by the previous s tates of the

input. The technique of sequence retention based on

time was first introduced in Hopfield Networks[7].

Hopfield Networks can store memory of the input

sequence which can be addressed based on content

and it thus falls under the category of Recurrent

Neural Networks, or RNN.

The intuition behind RNN is that one or more hidden

layers of previous timesteps are stacked on top of

each other, and each hidden layer depends on their

respective inputs at a certain timestep and the

previous timestep.

This can be observed in Fig. 6 and calculated using:

Figure 6: Representation of a Basic RNN Cell

Where, is the weight matrix between the input

layer and the hidden layer, is the weight matrix

within the hidden layer, is the input at timestep

and is the hidden layer output of the previous

timestep (which is fed into the next neuron of

the hidden layer along with the input of the next

timestep.

The output from each neuron in the hidden layer can

be calculated using:

Where, Wxh is the weight matrix between the hidden

layer and the output layer, ht is the hidden layer

neuron output at the current timestep t.

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 58

Thus, Recurrent Neural Networks, with hidden layers

inclusive of different timesteps, have the ability to

remember sequences. But it can‟t store the memory

over a long timestep due to a phenomenon known as

the Vanishing Gradient.

Vanishing Gradient causes the network to be

indecisive about which information of some timestep

is valuable, and thus store it, and which information

is not valuable, and thus discard it. Hence, an

improvement is required, and this is where Long

Short-term Memory [8], or LSTM, proves to be vital.

E. Long Short-Term Memory Networks

LSTMs are an improvement over other Recurrent

Neural Network Models, which had been

implemented since Hopfield Networks, due to its

faster training, time complexity of and overall

better performance in solving complex, time-based

input sequences.

But to understand LSTM Network which is

represented in Fig. 7, it must be compared with the

basic RNN Model.

Figure 7: Representation of an LSTM Cell [8]

The output in an RNN architecture can be calculated

as:

Comparing to RNN, the above equation is exactly

like the RNN used to compute the hidden state at

timestep t. But it‟s not the true hidden state in terms

of LSTMs, hence we named it as .

Firstly, the LSTM is given the ability to forget, which

means that it can decide whether to forget the

previous hidden state or not. This is achieved by

adding a Forget Gate Layer. The output of this layer

is computed as:

In contrast to the forget gate layer, to instruct the

model whether to update the current state using its

previous state, we need to add an Input Gate Layer.

The output is calculated as:

Next, we compute the temporal cell s tate for the

current timestep. It looks just like the output of RNN

above, except that tanh activation function is used:

 ̃

The actual cell state is thus computed for the current

timestep t, using the forget gate and input gate, as

mentioned above.

Intuitively, doing so helps the LSTM to keep only the

necessary information and forget the unnecessary

ones.

 ̃

After the current cell state is computed, it is used to

compute the current hidden state as follows:

Finally, the output of the hidden state for the current

timestep has been calculated.

The remaining task is like that of the RNN model,

which is computing the actual output :

F. Convolution Neural Networks

Convolutional Neural Network, or CNN is a class of

feed-forward neural network mainly used for

classification in image recognition related

applications. The concept of CNNs was first

introduced in Neocognitron [9] which is a self-

learning model for spatially-invariant mechanism for

pattern recognition.

Over the years of research, CNNs have been mainly

been used for image classification [10] or object

detection. But use of CNNs in text classification in

have shown promising results. Hence, it‟s relevant to

understand the concept of the convolutional neural

network.

CNNs mainly differ from any other neural network as

it considers the input as an image which is two

dimensional in nature and regular neural networks

don‟t work as excepted with images.

For a clearer understanding, if a color images of size

 are inputs to a regular neural network

then the first hidden layer includes 3072 weights.

This number of weights become unmanageable when

the size of input images increases, say to

 , because this would lead to the network

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 59

utilizing more neurons per hidden layer and this can

result in overfitting.

Overfitting is a Machine Learning concept where a

model completing fits the training data and produces

Figure 8: Representation of a CNN Architecture [10]

a 100% accuracy but fails when new test data is

introduced to the model.

With such a situation, Convolutional Neural

Networks provide a reasonable alternative by the use

of 3D neurons as seen in Fig. 8. All the layers of the

CNN have 3 dimensions: Width, Height and Depth (it

can also refer to the number of channels in an image).

This helps the CNN to extract high-level and

complex features from the input and encode it as

weights to the model with lesser parameters

compared to regular neural networks.

But as this paper is more NLP oriented, CNN is used

to extract features from the 3D output of the LSTM

layer in the Neural NLU Engine. Every layer in CNN

transforms an input of 3 dimensions to an output of 3

dimensions with an activation or differentiable

function.

There are mainly 3 types of layers in a CNN

architecture:

1. Convolutional Layer:

This layer performs convolution on a small regions of

input images by performing a dot product between

the weights of the layer and the regions of the input

image with a filter of different kernel sizes.

2. Pooling Layer:

This layer transforms the input using the down-

sampling operation along the width and height, which

are considered as the spatial dimensions.

3. Fully-Connected Layer:

This layer is similar to a regular neural network

which is used as the output layer in any architecture

to perform the classification based on weights from

the previous layers.

III. METHODOLOGY

A. Selection of Dataset

Any Machine Learning algorithm requires a dataset

which fits perfectly to train a model for the desired

purpose. The success of any such paper heavily

depends upon how good the dataset is to train the

model. There are a number of open-source datasets

available for building models for NLP applications.

Among such datasets, this paper chose the Stanford

Question Answering Dataset (SQuAD) [11]. SQuAD

is an extensive dataset mainly created for building

machine comprehension systems. It includes more

than 100,000 questions and its respective answers

created by crowd workers on over 20,000 articles

scraped from Wikipedia ranging around 500

individual topics.

Such a large dataset with a huge text corpus is

optimum for building highly accurate deep learning

models for NLP applications. Although this dataset is

mainly targeted for building machine comprehension

systems, which can be defined as a system which can

produce an answer to a question related to a passage

which is fed into the system, this paper extracts only

the articles which acts as the training text corpus and

the individual questions and their answers as a

Knowledge Base. Such open-source datasets are not

always structured in a manner required by the task at

hand. Hence, data pre-processing is a vital part of any

machine learning task where the data is extracted and

arranged in a manner most suitable for the further

steps. The code used for extracting and storing the

data, in excel format, can be found in the Appendix.

B. Generation of Word Vectors

After the dataset is processed and structured in the

required manner, the first task towards designing a

Neural NLU Engine is to learn the vectors of all the

words in the vocabulary of the training text corpus.

As mentioned in the Literature Review section, this

paper uses the Word2Vec approach to learn word

vector representations which is later used in building

the Intent Recognition System. To implement

Word2Vec on Python, Gensim is used. Gensim is a

python package mainly for performing Topic

Modelling on a collection of documents but also

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 60

Figure 9: Training Flow for learning Word Vectors

provides implementations of different word

embedding algorithms amongst which Word2Vec is

used by this paper.

As observed from Fig. 9, the Word2Vec

implementation begins with loading the text corpus

generated from SQuAD, which is to be used to

generate word vectors. Before using the text corpus

as an input to the Word2Vec Model, it is vital to

perform some text pre-processing steps which can be

listed as follows:

 Tokenize every text into multiple individual

sentences if the text has more than 1 sentence.

 Tokenize every sentence into a list of words.

Once, the training corpus is clean and ready to be

trained, the Word2Vec model from the Gensim is

used to train over the training corpus to learn all the

word vector representations.

The CBOW Algorithm is used for the above training

with a vector size of 100 dimensions, setting the

learning rate to 0.01 and subsampling count of 0.05

for common words. The Word2Vec model trains for

over 100 epochs (iterations) with the minimum

frequency of 1 for any word, meaning the model

considers all the words in the entire training corpus.

Once the model training is complete, the model is

saved in a text format with every line representing a

word and its vector representation. t-SNE (t-

distributed Stochastic Neighbor Embedding), a

dimensionality reduction technique is used to

visualize all the word vectors over the vector space.

C. Extracting Latent Topics

Topic Modelling is unsupervised in nature and thus it

can be used to find latent topics from a text corpus

with the help of LDA (Latent Dirichlet Allocation)

Algorithm. But it is observed that the Author-Topic

Model, which is based on the LDA Model is more

efficient with SQuAD as each document in the text

corpus is labelled with a title.

Thus, the Author-Topic Model can be modified to

work like a Title-Topic Model in which latent topics

are extracted from the titles of the text corpus. As

shown in Fig. 10, for the title-topic modelling, the

model first loads the target corpus and performs the

following pre-processing steps:

 Removing whitespaces, digits and non-ASCII

characters.

 Removing stopwords. (This improves the

accuracy of the model as stopwords are always

in a high frequency in any document).

 Lemmatizing other words and tokenizing each

text, transforming it to a list of tokens (words).

 Extending the list of tokens with the entities

extracted by the NER, using a python package

called Spacy, and bigrams (pair of words) based

on collocation of words in a document.

After the documents are pre-processed and ready to

train, it is important to generate unique IDs for all

documents as well as unique titles of the entire text

corpus. These document and topic IDs are then used

to create a title to document mapping where every

title is mapped to a list of documents labelled to the

respective titles.

Before training the author-topic model, it is important

to create a dictionary of all unique words in the entire

corpus and filtering out extremes, i.e. removing

words occurring less than 20 times more than 50% of

the entire corpus. This also adds to the improvement

of the model accuracy.

To train the model, the corpus needs to be

transformed to the Bag-of-Words Representation.

Once all the above steps are completed, the author-

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 61

Figure 10: Training flow of Author-Topic Modelling

topic model is trained over the transformed corpus

for 25 topics. The alpha and eta parameters are set to

‘auto’. This indicates that these parameters update

themselves based on the training corpus.

The Model is trained 5 times with a different random

state and the model with the highest coherence value

is chosen as the winner model. Coherence is a metric

to determine the accuracy of topic modelling, mainly

used to find the number of topics which can be

extracted from a training corpus.

The trained model is then saved and a title to topic

mapping is created as a dataset where every title is

mapped to only 3 highest probable topics, as every

title can have a mixture of latent topics. With manual

inspection, the 25 topics are reduced to 18 topics by

combining a few topics on the account of them being

similar. Any interactive visualization tool can be used

to view the probabilities of tokens (words) in every

topic.

D. Intent Recognition System

All the techniques mentioned before play a specific

part in completing the design of the Intent

Recognition System. This system can be defined as

an important component of the Neural NLU Engine

where the first step is to understand the intent of a

user.

Figure 11: Training Flow of Intent Recognition

System

An Intent can be understood as to what the user is

trying to express in a sentence. Once the intent has

been recognized by the Neural NLU Engine, any

conversational agent using the NLU Engine can

proceed with the Selection Response System which

selects the closest similar question from the database

and responds with its corresponding answer.

As shown in Fig. 11, the dataset and the word vectors

are loaded which is followed by the performing text

pre-processing steps on the questions from the

training dataset. While loading the word vectors, a

vocabulary of all the unique words is also created and

every word is assigned an index value which is later

used to transform the training questions to an array of

word indices. As the labels against the questions are

of string datatype, label IDs are generated which

convert the list of training labels to an array of

integer values representing the output classes of the

Intent Recognition System.

While generating a Question-Index matrix X, every

question in the training dataset is tokenized, and an

empty matrix is filled with the word vectors of all the

words in the sentence.

This acts as a numerical representation of a sentence

which is then fed as input while training the neural

network model. A maximum length for every

sentence is decided so that all the sentences are equal

in length. Any shorter sentence is padded at the end

and longer sentences are clipped off at the maximum

length.

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 62

Figure 12: LSTM+CNN Model Architecture

For building the Neural Network Architecture, the

paper uses Keras which is a framework running on

top of Tensorflow, a Python Deep Learning Library

developed by Google.

The Architecture includes an Embedding Layer

which acts as the Input Layer and a Dense Layer is

used as the Output Layer. For the Hidden Layers of

the Neural Network Architecture, the paper

implements a combination of LSTM and CNN

Layers, as observed in Fig. 12.

While compiling the network, the model uses

Categorical-Crossentropy

as the loss function, Adam

as the optimizer with a learning rate of 0.001 and

accuracy as the model metric. The Neural Network

architecture includes an LSTM layer of size 100 and

a concatenation of 3 CNN Layers with 2D

Convolutions and Max Pooling with filter sizes of 10,

15 and 20.

Once the designed model is compiled, it is trained on

the transformed training dataset for a certain number

of Epochs (Iterations) and Batch Size. Once the

training is complete, the model is tested and validated

on the test dataset for checking the model‟s accuracy.

Once the desired accuracy is achieved, the model can

is saved.

This saved model is the main component of the Intent

Recognition System.

Figure 13: Extracted Questions and Answers

IV. RESULT ANALYSIS

A. Dataset Extraction

In the Methodology section, the SQuAD was

described as a dataset mainly used for building

machine comprehension systems. But to structure it

in a form required by the project, The JSON file had

to be parsed to extract titles, content (Wikipedia

articles on all titles) and a set of questions and

respective answers on every article.

Fig. 13 shows the extracted questions and the

respective answers from SQuAD.

B. Word Vectors

As mentioned in the Methodology section, the word

vector representations are generated using the CBOW

algorithm implemented on Python with the help of

Gensim. Fig. 14 depicts the word vector

representation of a single word as an example.

As it is evident from Fig. 16, the word “project” is

represented as a vector of 100 dimensions.

Similar to this, the word vector training produced

vectors for a little over 100,000 unique tokens

(words) from the training corpus. It is possible to find

similar words closer to each other in the vector space.

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 63

Representing words in a vector space has many

advantages as follows:

 Similar words are closer to each other in the

vector space.

Figure 14: Word Vector Representation Example

 Vector arithmetic like

 ,

where represents a vector representation

of a word, holds true.

Fig. 15 shows an example of the most similar words

of the word “history”.

Figure 15: Most Similar Words Example

As observed from Fig. 16, around 500 words from

the entire vocabulary are represented in a vector

space. As the vector dimension of all words is 100, it

is necessary to reduce the dimensionality of all

vectors.

Hence t-SNE is used to reduce the dimensions to 2

which then plotted in a scatter form. For a better

understanding of the word vectors, it is can be

viewed in the vector space that similar words are

clustered together just as mentioned above.

C. Title-Topic Modelling

As discussed in the Methodology section, instead of

using the LDA approach, the paper uses Title-Topic

Modelling to find latent topics of the unique titles of

the SQuAD. Fig. 17 describes the flow of SQuAD

from its original form to a labelled dataset for the

Intent Recognition System.

Figure 16: Word Vector Space

In Fig. 18, the 25 topics are reduced to 18 labels upon

manual inspection. Hence, the end result of the Title-

Topic Modelling is the reduction of 490 titles to 18

labels. This is around 96% reduction of possible

intents of a user question.

During the experimentation phase, it is observed that

when Topic Modelling using LDA is implemented,

the model gains an accuracy of around 60% whereas

when the Author-Topic Modelling is implemented,

the model accuracy increased by almost 18%, thus

giving a 78% accuracy of the model to predict the

labels of titles from the text corpus.

D. Intent Recognition System

During the experimentation phase of building the

Intent Recognition System, a number of neural

network architectures were tested for high accuracies.

The training dataset is a collection of almost 90,000

questions labelled during the Title-Topic Modelling.

Figure 17: SQuAD Data Flow

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 64

Figure 18: Label Distribution over Titles

This phase led to the design of a Neural Network

Architecture for classifying a user question to 18

intents. The approach for designing the model

architecture in the Intent Recognition System

involved using an LSTM+CNN model architecture.

In this architecture, the input Sentence-Index matrix

is fed into the Embedding layer with pre-trained word

vectors.

The Hidden Layers include an LSTM layer followed

by three 2D-Convolution Layers with filter sizes of

10, 15 and 20. The outputs of these layers is then

concatenated, flatten and fed into the Fully

Connected Layer which outputs a vector of 18

dimensions.

Figure 19: Model Accuracy

Figure 20: Model Loss

This model also transforms the input to a probability

vector for 18 labels in which the label with the

maximum probability is chosen as the winner intent.

The LSTM+CNN Model Architecture achieves a

validation accuracy of 88.36%.

This model is trained over 20 epochs (iterations) and

the training metrics can be observed in Fig. 19 and

Fig. 20. It is important to observe the efficiency of

this Approach as it is able to achieve a very high

accuracy in few epochs.

V. FUTURE SCOPE

The models designed and trained can be improved

with better and more complex algorithms, but they

currently perform well in a working environment.

The word vectors can be improved with continuous

hyperparameter tuning, exploring other techniques,

as well as using a larger text corpus for the

Word2Vec algorithm to run more efficiently. The

Named Entity Recognition System can be improved

by training it with more entities, labelled in the

training corpus.

The Author-Topic Modelling can be improved with

better document representations instead of using the

current Bag-Of-Words format. The technique used to

represent words in a document is an important

parameter at achieving a higher accuracy. But with

complexity comes the trade-off in regards with the

infrastructure necessary for training such models. All

the current models have been trained on a system

with an Intel Core i5 Microprocessor and 8GB RAM.

To train models with higher complexity and deeper

layers, high-speed GPUs are required as they train a

neural network much faster than a CPU does due to

the concept of Parallelism which is faster on a GPU

for performing all matrix operations. The Intent

Recognition System can be improved with the use of

other Deep Learning algorithms not explored in this

project. The Response Selection System can be

designed with techniques other than topic modelling

and Deep Learning options can be explored. The

SQuAD can be also used for making a Machine

Comprehension system which can be integrated into

the Neural NLU Engine.

VII. CONCLUSION

Over the course of this paper, the history of Artificial

Intelligence has been discussed and how it led to the

creation of Conversational Platforms. Understanding

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147009 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 65

the shortcomings in today‟s technology is a strong

motivation for this paper to overcome those

shortcomings with a series of methodologies which

combine to form the desired Neural Natural

Language Understanding Engine.

Tasks such as generation of word vectors, topic

modelling and named entity recognition seem to be

mutually exclusive but they all play a vital role in

designing an Efficient NLU engine which can power

a strong conversational agent which can accurately

understand the user message and respond to the user

with a relevant answer.

We observed the various plots for LDA topic

modelling which describe the model perplexity when

the model is trained with changing hyperparameters

which led to the implementation of the Author-Topic

Modelling which was able to reduce almost 96% of

corpus titles for intent representation with an

accuracy of 78%.

For the Intent Recognition System, after training the

neural network using various architectures, it is

observed that the most preferred choice is the

LSTM+CNN Model Architecture as the model

achieves a higher accuracy in fewer training

iterations. Upon training the model, it achieves an

accuracy of 88.36%.

REFERENCES

[1] A.M. Turing, “Computing Machinery and

Intelligence”, Mind, Vol. 49, Pg. 433-460, 1950.

[2] Joseph Weizenbaum, “ELIZA - A Computer

Program for the Study of Natural Language

Communication between Man and Machine”,

Communications of the ACM, Vol. 9, Pg. 36-45,

1966.

[3] Tomas Mikolov, Kai Chen, Greg Corrado,

Jeffrey Dean, “Efficient Estimation of Word

Representations in Vector Spaces”, Arxiv, Pg. 1-

9, 2013.

[4] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg

Corrado, Jeffrey Dean, “Distributed

Representations of Words and Phrases and their

Compositionality”, Advances in Neural

Information Processing Systems, Pg. 3111-3119,

2013.

[5] David M. Blei, Andrew Y. Ng, Michael I.

Jordan, “Latent Dirichlet Allocation”, Journal of

Machine Learning Research , Vol. 3, Pg. 993-

1022, 2003.

[6] Michael Rosen-Zvi, Thomas Griffiths, Mark

Steyvers, Padhraic Smyth, “The Author-Topic

Model for Authors and Documents”, UAI '04

Proceedings of the 20th conference on

Uncertainty in artificial intelligence, Canada, 7-

11 July, Pg. 487-494, 2004.

[7] J.J. Hopfield, “Neural Networks and Physical

Systems with Emergent Collective

Computational Abilities”, Proceedings of the

National Academy of Sciences of the United

States of America, USA, April, Vol. 79, Pg.

2554-2558, 1982.

[8] Sepp Hochreiter, Jürgen Schmidhuber, “Long

Short-Term Memory”, Neural Computation 9(8) ,

Pg. 1735-1780, 1997.

[9] Kunihiko Fukushima, “Neocognitron: A Self-

Organizing Neural Network Model for

Mechanism of Pattern Recognition Unaffected

by Shift in Position”, Biological Cybernetics,

Vol. 36, Pg. 193-202, 1980.

[10] Alex Krizhevsky, Ilya Sutskever, Geoffrey E.

Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks”, 25
th

International Conference on Neural Information

Processing Systems, USA, 3-6 December, Vol.

1, Pg. 1097-1105, 2012.

[11] Pranav Rajpurkar, Jian Zhang, Konstantin

Lopyrev, Percy Liang, “SQuAD: 100,000+

Questions for Machine Comprehension of Text”,

Proceedings of the 2016 Conference on

Empirical Methods in Natural Language

Processing, USA, 1-5 November, Pg. 1-10,

2016.

