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Abstract- Conversational Agents, commonly known as 

Chatbots, are a successful result of the collaboration of 

Natural Language Processing (NLP) and Deep 

Learning. Major Technology Giants like Google, 

Amazon, Microsoft, etc. are heavily invested in 

developing a sophisticated conversational agent which 

can pass the Turing Test. There are various 

methodologies which can be used to develop the various 

components of such an agent from scratch. This paper 

uses SQuAD, an open Question-Answering dataset, for 

developing an Intent Recognition System for any 

Question-Answering system. Inspired by Author-Topic 

Modelling, a Title-Topic Modelling technique is used in 

combination with various Deep Learning models to 

train the Intent Recognition System, achieving an 

accuracy of 88.36%. 

 

Index Terms- Conversational Agents, Deep Learning, 

Intent Recognition, Natural Language Processing, 

Question-Answering System, Title-Topic Modelling. 

 

1. INTRODUCTION 

 

The origin of conversational agents can be traced 

back to 1950 when Alan Turing, father of Computer 

Science, published his first paper [1]. His question, 

“Can Machines think?” ushered the world into the era 

of Artificial Intelligence (AI) which began a plethora 

of research to turn his question into reality.  

Numerous sub-fields of AI like Machine Learning, 

Computer Vision, and recently, Deep Learning have 

seen more researchers committing themselves to 

develop novel techniques in the respective fields.  

The development of conversational agents falls under 

the field of Natural Language Processing, which is an 

area of research concerned with the understanding of 

human (natural) languages by the machines. Similar 

to Artificial Intelligence, its origin can also be traced 

back to 1950s when Alan Turing proposed a criterion 

for intelligence, known as  the “Turing Test”.  

A machine passes the test when a human is unable to 

distinguish the machine‟s responses from that of a 

human‟s. 

ELIZA [2] was the first implementation of a human-

like dialog system, developed in 1960s. It worked on 

a rule-based methodology. Since then, the number of 

research papers published in this field is 

overwhelming.  

NLP Techniques like Dependency Parsing, Named 

Entity Recognition, etc. are vital nowadays in the 

development of the most sophisticated conversational 

agent.  

A. Motivation 

The current scenario of the chatbot industry mainly 

involves detecting the intent of a user utterance to the 

conversational agent by extracting entities and using 

classic machine learning algorithms such as Support 

Vector Machines to develop a classifier for the pre-

defined intents. This is big step from the previous, 

rule-based approach but still lacks the true AI 

capabilities.  Natural Languages are complex, and a 

human can express an intent in more than one way. 

To be able to understand such complexities can allow 

any machine to pass the “Turing Test”.  

This paper explores methodologies involved in 

developing a Question-Answering system using the 

concepts from NLP and Deep Learning.  

The Neural Natural Language Understanding engine 

uses Intent Recognition System to understand the 

intents expressed by the user. For training the Intent 

Recognition System, Topic Modelling techniques are 

used to automatically label the training data, as the 

original dataset is unlabeled.  

The techniques used are modular, i.e. they can be 

used individually in other systems according to the 

researcher‟s requirement.  

 

II. LITERATURE REVIEW 
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A. Word Embeddings 

Word Embedding can be defined as a distributed 

vector representation of words in a sentence or 

document. It is a technique of projecting words onto 

the vector space and this proves to be highly useful in 

various NLP tasks like statistical language modelling, 

machine translation, etc. The vectors of similar words 

or phrases can be observed to be closer in the vector 

space and these vectors represent the importance of a 

word in a document.  

This also helps in finding the semantic as well as 

syntactic similarities between words and phrases. 

Since 1986, there has been a great deal of research in 

introducing new techniques of learning word 

embeddings. There have been Neural Network 

Language Model approaches, but this paper 

implements the Log-Linear Model approach, 

commonly called as Word2Vec [3]. 

Word2Vec is a log-linear model architecture which is 

computationally-efficient, and a simple approach 

compared to the neural network model in learning 

vector representations of words or phrases in a 

sentence in the training dataset.  

There are 2 architectures of this model: 

1. Continuous Bag-Of-Words (CBOW) Model  

2. Continuous Skip-Gram (SG) Model 

The Continuous Bag-Of-Words model predicts the 

probability of a target word from the context in the 

source sentence, whereas Skip-Gram model performs 

the opposite task of predicting the context words 

from a target word. The learning complexity of both 

models are: 

1. CBOW Model: 

                  

2. Skip-Gram Model: 

               
     

Where, Q – Training Complexity, N – number of 

previous words, D – Dimension of the projection 

layer (N x D), V – size of the vocabulary, C – 

maximum distance of words. 

 
Figure 1: CBOW and Skip-Gram Model 

Architectures [3] 

Fig. 1 clearly describes the architecture of the CBOW 

model and the Skip-Gram model as mentioned above. 

It is observed that CBOW model works better than 

Skip-Gram as it has the effect of smoothening over a 

lot of the distributional information. Thus, the 

CBOW model has been chosen for training the word 

vectors on the source dataset. 

While implementing the CBOW model, both the 

input and target data are one-hot encoded, which is a 

binary encoding technique where „1‟ represents the 

presence of data and „0‟ represents the absence of it. 

Both the layers are of the size [1 x V]. In this 

architecture, there are 2 sets of weights, one between 

the input layer and the hidden layer, and the other 

between the hidden layer and the output layer. N has 

been chosen as the size of the hidden layer. Thus, the 

dimensions of the weights are [V x N] and [N x V] 

respectively. 

As seen in Fig. 2, The hidden layer uses a Linear 

Activation function and the Output Layer uses a 

Softmax function, a generalization of the logistic 

function, which works on the Maximum Likelihood 

(ML) principle of maximizing the probability of the 

next word, wt, given a set of previous words, h. The 

softmax function can be represented as: 

                             

                   
                 

∑                                  

 

Where score (wt, h) calculates the compatibility of 

word wt with the context h. We now train the model 

by maximizing the log-likelihood on the training 

dataset. 

 
Figure 2: Diagrammatic Representation of CBOW 

Model for multiple context words [4] 
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Thus, we maximize, 

                    

            

    ∑                  
                

 

Sub-sampling of most occurring words [4] in the 

training dataset is useful as such words provide less 

information than the rarely occurring words.  

This technique thus improves the learning of the 

word embeddings. The approach used can be 

computed as follows: 

    
     √

 

     
 

Where, P(wi) – Probability, f(wi) – frequency of word 

wi, and t – a chosen threshold. 

These word embeddings are later used in a Neural 

Network Architecture designed for the Intent 

Recognition System. 

 

B. Topic Modelling 

Topic Modelling is a method of categorizing a set of 

documents into various topics. It is an unsupervised 

technique and thus it is different from other rule-

based text mining approaches. The model observes 

the collections of words in the document corpora and 

clusters them into different topics. Evidently, this  

Figure 3: Representation of LDA Topic Modelling 

[5] 

technique is mainly used for document clustering, 

organization of large blocks of textual data and 

information retrieval from unstructured text in the 

dataset which can be used for feature selection. 

There are many algorithms for Topic Modelling, but 

the Latent Dirichlet Allocation (LDA) [5] technique 

for Topic Modelling is found to be the most efficient 

and accurate.  

As evident from Fig. 3, LDA assumes the documents 

to be produced from a mixture of latent topics. The 

topics then generate words based on the probability 

distribution. As LDA is a matrix factorization 

technique, any corpus (collection of documents) in 

the vector space can be represented as a Document-

Term matrix.  

The Document-Term matrix is further converted to 

lower dimensional matrices, M1 and M2, where M1 

is the Document-Topic matrix and M2 is a Topic-

Term matrix. As these distributions are required to be 

improved, the core concept of LDA plays an 

important role. It uses sampling techniques to 

improve the above matrices. 

It iterates through each word w in every document d 

and tries to adjust the current Topic-Word assignment 

with a new assignment. A new topic k  is assigned to 

word w with a probability P which is a product of 

two probabilities p1 and p2. For every topic, two 

probabilities p1 and p2 are calculated. 

             |             

Where, p1 represents the proportion of words in 

document d, currently assigned to topic t.  

And, 

            |          

Where, p2 represents the proportion of assignments 

to topic t over all documents that come from this 

word w.  

 

Figure 4: Graphical Model Representation of LDA 

The current topic-word assignment is then updated 

with a new topic whose probability is the product of 

p1 and p2. In this step, the model assumes that all the 

existing word-topic assignments except the current 

word are correct. Essentially, this is the probability 

that topic t generated word w, so it makes sense to 

adjust the current word‟s topic with new probability. 

After several iterations, a stable state is achieved 

where the document-topic and topic-term 

distributions are optimal leading to the convergence 

point of LDA.  

This concept can be understood mathematically and 

as LDA is a generative process, the following 

assumptions can be made: 

1. Choose N ~ Poisson(ξ) 
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2. Choose θ ~ Dir(α) 

3. For every N words   , 

a.  Choose a Topic    ~ Multinomial(θ) 

b. Choose a word    from      |     , where p is 

a multinomial probability under the condition of 

the topic   . 

Where, the Dirichlet Distribution has dimensionality 

equal to   which is also the dimensionality of  . The 

matrix β with a dimension of      acts as a 

parameter for the word probabilities, where 

           |      . 

As seen in Fig. 4, with α and β parameters and M 

documents in the corpora, the joint topic distribution 

for a collection of N topics z and N words w can be 

formulated as,  

        |     

    |  ∏      |        |

 

   

       

 

C. Title-Topic Modelling 

LDA Topic Modelling is a very efficient technique 

for extracting topics from documents but when 

documents belong to certain category or include 

overlapping titles, it is possible to have a less 

accurate topic modelling has documents can fall 

under wrong topics.  

 
Figure 5: (a) LDA Topic Model (b) Author Model (c) 

Author-Topic Model [6] 

Inspired by the Author-Topic Model [6], this paper 

considers the generalized titles as a metaphorical 

author of the documents. 

As observed in Fig. 5(c), for D documents having A 

authors, T topics are extracted using the LDA as the 

foundation to calculate author-topic distributions    

alongside topic-word and document-topic 

distributions.  

Hence, the various authors (or more specifically 

titles) are categorized under the extracted topics. 

Hence, this paper uses a modified version of the 

Author-Topic Modelling, called Title-Topic 

Modelling, to extract topics for the various titles of 

the training dataset. 

 

D. Recurrent Neural Networks 

Over years, Artificial Neural Networks have 

outperformed other learning algorithms due to its 

ability to learn more complex and high-level features 

from data of all kinds using hidden layers which 

improve the accuracy of a prediction or classification 

model.  

But one major limitation of such neural networks is 

that they can‟t understand sequences, i.e. how the 

current state is affected by the previous s tates of the 

input. The technique of sequence retention based on 

time was first introduced in Hopfield Networks[7]. 

Hopfield Networks can store memory of the input 

sequence which can be addressed based on content 

and it thus falls under the category of Recurrent 

Neural Networks, or RNN. 

The intuition behind RNN is that one or more hidden 

layers of previous timesteps are stacked on top of 

each other, and each hidden layer depends on their 

respective inputs at a certain timestep and the 

previous timestep. 

This can be observed in Fig. 6 and calculated using: 

                     

 

Figure 6: Representation of a Basic RNN Cell 

Where,     is the weight matrix between the input 

layer and the hidden layer,     is the weight matrix 

within the hidden layer,    is the input at timestep   

and      is the hidden layer output of the previous 

timestep (     which is fed into the next neuron of 

the hidden layer along with the input of the next 

timestep.   

The output from each neuron in the hidden layer can 

be calculated using: 

                  

Where, Wxh is the weight matrix between the hidden 

layer and the output layer, ht is the hidden layer 

neuron output at the current timestep t. 
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Thus, Recurrent Neural Networks, with hidden layers 

inclusive of different timesteps, have the ability to 

remember sequences. But it can‟t store the memory 

over a long timestep due to a phenomenon known as 

the Vanishing Gradient.  

Vanishing Gradient causes the network to be 

indecisive about which information of some timestep 

is valuable, and thus store it, and which information 

is not valuable, and thus discard it. Hence, an 

improvement is required, and this is where Long 

Short-term Memory [8], or LSTM,  proves to be vital. 

E. Long Short-Term Memory Networks 

LSTMs are an improvement over other Recurrent 

Neural Network Models, which had been 

implemented since Hopfield Networks, due to its 

faster training, time complexity of      and overall 

better performance in solving complex, time-based 

input sequences.  

But to understand LSTM Network which is 

represented in Fig. 7, it must be compared with the 

basic RNN Model. 

 
Figure 7: Representation of an LSTM Cell [8] 

The output in an RNN architecture can be calculated 

as: 

                      

Comparing to RNN, the above equation is exactly 

like the RNN used to compute the hidden state at 

timestep t. But it‟s not the true hidden state in terms 

of LSTMs, hence we named it as   .  

Firstly, the LSTM is given the ability to forget, which 

means that it can decide whether to forget the 

previous hidden state or not. This is achieved by 

adding a Forget Gate Layer. The output of this layer 

is computed as: 

                      

In contrast to the forget gate layer, to instruct the 

model whether to update the current state using its 

previous state, we need to add an Input Gate Layer. 

The output is calculated as: 

                      

Next, we compute the temporal cell s tate for the 

current timestep. It looks just like the output of RNN 

above, except that tanh activation function is used: 

  ̃                        

The actual cell state is thus computed for the current 

timestep t, using the forget gate and input gate, as 

mentioned above.  

Intuitively, doing so helps the LSTM to keep only the 

necessary information and forget the unnecessary 

ones. 

                ̃ 

After the current cell state is computed, it is used to 

compute the current hidden state as follows: 

               

Finally, the output of the hidden state for the current 

timestep has been calculated.  

The remaining task is like that of the RNN model, 

which is computing the actual output   : 

                  

 

F. Convolution Neural Networks 

Convolutional Neural Network, or CNN is a class of 

feed-forward neural network mainly used for 

classification in image recognition related 

applications. The concept of CNNs was  first 

introduced in Neocognitron [9] which is a self-

learning model for spatially-invariant mechanism for 

pattern recognition.  

Over the years of research, CNNs have been mainly 

been used for image classification [10] or object 

detection. But use of CNNs in text classification in 

have shown promising results. Hence, it‟s relevant to 

understand the concept of the convolutional neural 

network. 

CNNs mainly differ from any other neural network as 

it considers the input as an image which is two 

dimensional in nature and regular neural networks 

don‟t work as excepted with images.  

For a clearer understanding, if a color images of size 

          are inputs to a regular neural network 

then the first hidden layer includes 3072 weights. 

This number of weights become unmanageable when 

the size of input images increases, say to      

      , because this would lead to the network 
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utilizing more neurons per hidden layer and this can 

result in overfitting.  

Overfitting is a Machine Learning concept where a 

model completing fits the training data and produces  

 
Figure 8: Representation of a CNN Architecture [10] 

a 100% accuracy but fails when new test data is 

introduced to the model. 

With such a situation, Convolutional Neural 

Networks provide a reasonable alternative by the use 

of 3D neurons as seen in Fig. 8. All the layers of the 

CNN have 3 dimensions: Width, Height and Depth (it 

can also refer to the number of channels in an image). 

This helps the CNN to extract high-level and 

complex features from the input and encode it  as 

weights to the model with lesser parameters 

compared to regular neural networks.  

But as this paper is more NLP oriented, CNN is used 

to extract features from the 3D output of the LSTM 

layer in the Neural NLU Engine. Every layer in CNN 

transforms an input of 3 dimensions to an output of 3 

dimensions with an activation or differentiable 

function.  

There are mainly 3 types of layers in a CNN 

architecture: 

1. Convolutional Layer: 

This layer performs convolution on a small regions of 

input images by performing a dot product between 

the weights of the layer and the regions of the input 

image with a filter of different kernel sizes. 

2. Pooling Layer: 

This layer transforms the input using the down-

sampling operation along the width and height, which 

are considered as the spatial dimensions. 

3. Fully-Connected Layer: 

This layer is similar to a regular neural network 

which is used as the output layer in any architecture 

to perform the classification based on weights from 

the previous layers. 

 

III. METHODOLOGY 

 

A. Selection of Dataset 

Any Machine Learning algorithm requires a dataset 

which fits perfectly to train a model for the desired 

purpose. The success of any such paper heavily 

depends upon how good the dataset is to train the 

model. There are a number of open-source datasets 

available for building models for NLP applications. 

Among such datasets, this paper chose the Stanford 

Question Answering Dataset (SQuAD) [11]. SQuAD 

is an extensive dataset mainly created for building 

machine comprehension systems. It includes more 

than 100,000 questions and its respective answers 

created by crowd workers on over 20,000 articles 

scraped from Wikipedia ranging around 500 

individual topics.  

Such a large dataset with a huge text corpus is 

optimum for building highly accurate deep learning 

models for NLP applications. Although this dataset is 

mainly targeted for building machine comprehension 

systems, which can be defined as a system which can 

produce an answer to a question related to a passage 

which is fed into the system, this paper extracts only 

the articles which acts as the training text corpus and 

the individual questions and their answers as a 

Knowledge Base. Such open-source datasets are not 

always structured in a manner required by the task at 

hand. Hence, data pre-processing is a vital part of any 

machine learning task where the data is extracted and 

arranged in a manner most suitable for the further 

steps. The code used for extracting and storing the 

data, in excel format, can be found in the Appendix. 

 

B. Generation of Word Vectors 

After the dataset is processed and structured in the 

required manner, the first task towards designing a 

Neural NLU Engine is to learn the vectors of all the 

words in the vocabulary of the training text corpus. 

As mentioned in the Literature Review section, this 

paper uses the Word2Vec approach to learn word 

vector representations which is later used in building 

the Intent Recognition System. To implement 

Word2Vec on Python, Gensim is used. Gensim is a 

python package mainly for performing Topic 

Modelling on a collection of documents but also  
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Figure 9: Training Flow for learning Word Vectors  

provides implementations of different word 

embedding algorithms amongst which Word2Vec is 

used by this paper. 

As observed from Fig. 9, the Word2Vec 

implementation begins with loading the text corpus 

generated from SQuAD, which is to be used to 

generate word vectors. Before using the text corpus 

as an input to the Word2Vec Model, it is vital to 

perform some text pre-processing steps which can be 

listed as follows: 

 Tokenize every text into multiple individual 

sentences if the text has more than 1 sentence. 

 Tokenize every sentence into a list of words. 

Once, the training corpus is clean and ready to be 

trained, the Word2Vec model from the Gensim is 

used to train over the training corpus to learn all the 

word vector representations. 

The CBOW Algorithm is used for the above training 

with a vector size of 100 dimensions, setting the 

learning rate to 0.01 and subsampling count of 0.05 

for common words. The Word2Vec model trains for 

over 100 epochs (iterations) with the minimum 

frequency of 1 for any word, meaning the model 

considers all the words in the entire training corpus.  

Once the model training is complete, the model is 

saved in a text format with every line representing a 

word and its vector representation. t-SNE (t- 

distributed Stochastic Neighbor Embedding), a 

dimensionality reduction technique is used to 

visualize all the word vectors over the vector space. 

 

C. Extracting Latent Topics 

Topic Modelling is unsupervised in nature and thus it 

can be used to find latent topics from a text corpus 

with the help of LDA (Latent Dirichlet Allocation) 

Algorithm. But it is observed that the Author-Topic 

Model, which is based on the LDA Model is more 

efficient with SQuAD as each document in the text 

corpus is labelled with a title.  

Thus, the Author-Topic Model can be modified to 

work like a Title-Topic Model in which latent topics 

are extracted from the titles of the text corpus. As 

shown in Fig. 10, for the title-topic modelling, the 

model first loads the target corpus and performs the 

following pre-processing steps: 

 Removing whitespaces, digits and non-ASCII 

characters. 

 Removing stopwords. (This improves the 

accuracy of the model as stopwords are always 

in a high frequency in any document). 

 Lemmatizing other words and tokenizing each 

text, transforming it to a list of tokens (words). 

 Extending the list of tokens with the entities 

extracted by the NER, using a python package 

called Spacy, and bigrams (pair of words) based 

on collocation of words in a document. 

After the documents are pre-processed and ready to 

train, it is important to generate unique IDs for all 

documents as well as unique titles of the entire text 

corpus. These document and topic IDs are then used 

to create a title to document mapping where every 

title is mapped to a list of documents labelled to the 

respective titles.  

Before training the author-topic model, it is important 

to create a dictionary of all unique words in the entire 

corpus and filtering out extremes, i.e. removing 

words occurring less than 20 times more than 50% of 

the entire corpus. This also adds to the improvement 

of the model accuracy. 

To train the model, the corpus needs to be 

transformed to the Bag-of-Words Representation. 

Once all the above steps are completed, the author- 
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Figure 10: Training flow of Author-Topic Modelling 

topic model is trained over the transformed corpus 

for 25 topics. The alpha and eta parameters are set to 

‘auto’. This indicates that these parameters update 

themselves based on the training corpus.  

The Model is trained 5 times with a different random 

state and the model with the highest coherence value 

is chosen as the winner model. Coherence is a metric 

to determine the accuracy of topic modelling, mainly 

used to find the number of topics which can be 

extracted from a training corpus.  

The trained model is then saved and a title to topic 

mapping is created as a dataset where every title is 

mapped to only 3 highest probable topics, as every 

title can have a mixture of latent topics. With manual 

inspection, the 25 topics are reduced to 18 topics by 

combining a few topics on the account of them being 

similar. Any interactive visualization tool can be used 

to view the probabilities of tokens (words) in every 

topic. 

 

D. Intent Recognition System 

All the techniques mentioned before play a specific 

part in completing the design of the Intent 

Recognition System. This system can be defined as 

an important component of the Neural NLU Engine 

where the first step is to understand the intent of a 

user. 

 
Figure 11: Training Flow of Intent Recognition 

System 

An Intent can be understood as to what the user is 

trying to express in a sentence. Once the intent has 

been recognized by the Neural NLU Engine, any 

conversational agent using the NLU Engine can 

proceed with the Selection Response System which 

selects the closest similar question from the database 

and responds with its corresponding answer. 

As shown in Fig. 11, the dataset and the word vectors 

are loaded which is followed by the performing text 

pre-processing steps on the questions from the 

training dataset. While loading the word vectors, a 

vocabulary of all the unique words is also created and 

every word is assigned an index value which is later 

used to transform the training questions to an array of 

word indices. As the labels against the questions are 

of string datatype, label IDs are generated which 

convert the list of training labels to an array of 

integer values representing the output classes of the 

Intent Recognition System. 

While generating a Question-Index matrix X, every 

question in the training dataset is tokenized, and an 

empty matrix is filled with the word vectors of all the 

words in the sentence.  

This acts as a numerical representation of a sentence 

which is then fed as input while training the neural 

network model. A maximum length for every 

sentence is decided so that all the sentences are equal 

in length. Any shorter sentence is padded at the end 

and longer sentences are clipped off at the maximum 

length.  
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Figure 12: LSTM+CNN Model Architecture 

For building the Neural Network Architecture, the 

paper uses Keras which is a framework running on 

top of Tensorflow, a Python Deep Learning Library 

developed by Google.  

The Architecture includes an Embedding Layer 

which acts as the Input Layer and a Dense Layer is 

used as the Output Layer. For the Hidden Layers of 

the Neural Network Architecture, the paper 

implements a combination of LSTM and CNN 

Layers, as observed in Fig. 12.  

While compiling the network, the model uses 

Categorical-Crossentropy 
 
as the loss function, Adam 

as the optimizer with a learning rate of 0.001 and 

accuracy as the model metric.  The Neural Network 

architecture includes an LSTM layer of size 100 and 

a concatenation of 3 CNN Layers with 2D 

Convolutions and Max Pooling with filter sizes of 10, 

15 and 20.  

Once the designed model is compiled, it is trained on 

the transformed training dataset for a certain number 

of Epochs (Iterations) and Batch Size. Once the 

training is complete, the model is tested and validated 

on the test dataset for checking the model‟s accuracy. 

Once the desired accuracy is achieved, the model can 

is saved.  

This saved model is the main component of the Intent 

Recognition System. 

Figure 13: Extracted Questions and Answers  

 

IV. RESULT ANALYSIS 

 

A. Dataset Extraction 

In the Methodology section, the SQuAD was 

described as a dataset mainly used for building 

machine comprehension systems. But to structure it 

in a form required by the project, The JSON file had 

to be parsed to extract titles, content (Wikipedia 

articles on all titles) and a set of questions and 

respective answers on every article. 

Fig. 13 shows the extracted questions and the 

respective answers from SQuAD.  

 

 

B. Word Vectors 

As mentioned in the Methodology section, the word 

vector representations are generated using the CBOW 

algorithm implemented on Python with the help of 

Gensim. Fig. 14 depicts the word vector 

representation of a single word as an example. 

As it is evident from Fig. 16, the word “project” is 

represented as a vector of 100 dimensions.  

Similar to this, the word vector training produced 

vectors for a little over 100,000 unique tokens 

(words) from the training corpus. It is possible to find 

similar words closer to each other in the vector space.  
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Representing words in a vector space has many 

advantages as follows: 

 Similar words are closer to each other in the 

vector space. 

 

Figure 14: Word Vector Representation Example 

 

 Vector arithmetic like           

                              , 

where        represents a vector representation 

of a word, holds true. 

Fig. 15 shows an example of the most similar words 

of the word “history”. 

 
Figure 15: Most Similar Words Example 

As observed from Fig. 16, around 500 words from 

the entire vocabulary are represented in a vector 

space. As the vector dimension of all words is 100, it 

is necessary to reduce the dimensionality of all 

vectors.  

Hence t-SNE is used to reduce the dimensions to 2 

which then plotted in a scatter form. For a better 

understanding of the word vectors, it is can be 

viewed in the vector space that similar words are 

clustered together just as mentioned above. 

 

C. Title-Topic Modelling 

As discussed in the Methodology section, instead of 

using the LDA approach, the paper uses Title-Topic 

Modelling to find latent topics of the unique titles of 

the SQuAD. Fig. 17 describes the flow of SQuAD 

from its original form to a labelled dataset for the 

Intent Recognition System. 

 

Figure 16: Word Vector Space 

In Fig. 18, the 25 topics are reduced to 18 labels upon 

manual inspection. Hence, the end result of the Title-

Topic Modelling is the reduction of 490 titles to 18 

labels. This is around 96% reduction of possible 

intents of a user question.  

During the experimentation phase, it is observed that 

when Topic Modelling using LDA is implemented, 

the model gains an accuracy of around 60% whereas 

when the Author-Topic Modelling is implemented, 

the model accuracy increased by almost 18%, thus 

giving a 78% accuracy of the model to predict the 

labels of titles from the text corpus. 

 

D. Intent Recognition System 

During the experimentation phase of building the 

Intent Recognition System, a number of neural 

network architectures were tested for high accuracies. 

The training dataset is a collection of almost 90,000 

questions labelled during the Title-Topic Modelling.  

 

Figure 17: SQuAD Data Flow 
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Figure 18: Label Distribution over Titles  

This phase led to the design of a Neural Network 

Architecture for classifying a user question to 18 

intents. The approach for designing the model 

architecture in the Intent Recognition System 

involved using an LSTM+CNN model architecture. 

In this architecture, the input Sentence-Index matrix 

is fed into the Embedding layer with pre-trained word 

vectors.  

The Hidden Layers include an LSTM layer followed 

by three 2D-Convolution Layers with filter sizes of 

10, 15 and 20. The outputs of these layers is then 

concatenated, flatten and fed into the Fully 

Connected Layer which outputs a vector of 18 

dimensions.  

 
Figure 19: Model Accuracy 

 
Figure 20: Model Loss  

This model also transforms the input to a probability 

vector for 18 labels in which the label with the 

maximum probability is chosen as the winner intent. 

The LSTM+CNN Model Architecture achieves a 

validation accuracy of 88.36%. 

This model is trained over 20 epochs (iterations) and 

the training metrics can be observed in Fig. 19 and 

Fig. 20. It is important to observe the efficiency of 

this Approach as it is able to achieve a very high 

accuracy in few epochs. 

 

V.  FUTURE SCOPE 

 

The models designed and trained can be improved 

with better and more complex algorithms, but they 

currently perform well in a working environment. 

The word vectors can be improved with continuous 

hyperparameter tuning, exploring other techniques,  

as well as using a larger text corpus for the 

Word2Vec algorithm to run more efficiently. The 

Named Entity Recognition System can be improved 

by training it with more entities, labelled in the 

training corpus. 

The Author-Topic Modelling can be improved with 

better document representations instead of using the 

current Bag-Of-Words format. The technique used to 

represent words in a document is an important 

parameter at achieving a higher accuracy. But with 

complexity comes the trade-off in regards with the 

infrastructure necessary for training such models. All 

the current models have been trained on a system 

with an Intel Core i5 Microprocessor and 8GB RAM.  

To train models with higher complexity and deeper 

layers, high-speed GPUs are required as they train a 

neural network much faster than a CPU does due to 

the concept of Parallelism which is faster on a GPU 

for performing all matrix operations. The Intent 

Recognition System can be improved with the use of 

other Deep Learning algorithms not explored in this 

project. The Response Selection System can be 

designed with techniques other than topic modelling 

and Deep Learning options can be explored. The 

SQuAD can be also used for making a Machine 

Comprehension system which can be integrated into 

the Neural NLU Engine. 

 

VII. CONCLUSION 

 

Over the course of this  paper, the history of Artificial 

Intelligence has been discussed and how it led to the 

creation of Conversational Platforms. Understanding 
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the shortcomings in today‟s technology is a strong 

motivation for this paper to overcome those 

shortcomings with a series of methodologies which 

combine to form the desired Neural Natural 

Language Understanding Engine.  

Tasks such as generation of word vectors, topic 

modelling and named entity recognition seem to be 

mutually exclusive but they all play a vital role in 

designing an Efficient NLU engine which can power 

a strong conversational agent which can accurately 

understand the user message and respond to the user 

with a relevant answer.  

We observed the various plots for LDA topic 

modelling which describe the model perplexity when 

the model is trained with changing hyperparameters 

which led to the implementation of the Author-Topic 

Modelling which was able to reduce almost 96% of 

corpus titles for intent representation with an 

accuracy of 78%. 

For the Intent Recognition System, after training the 

neural network using various architectures, it is 

observed that the most preferred choice is the 

LSTM+CNN Model Architecture as the model 

achieves a higher accuracy in fewer training 

iterations. Upon training the model, it achieves an 

accuracy of 88.36%. 
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