
© December 2018 | IJIRT | Volume 5 Issue 7 | ISSN: 2349-6002

IJIRT 147323 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 115

Parallel Cluster Resource and Job Allocation Using

Hybrid AHP Approach

Divya Dogra
1
, Mohit Trehen

2

1
Dept. of CSE, GCET, Gurdaspur, PTU Kapurthala, Punjab, India

2
Dept. of CSE, GCET, Gurdaspur, Punjab, India

Abstract- Resource availability and usability becomes

critical as mass user becomes need of the hour for

advanced and heterogeneous computing. Federated

cloud computing becomes building block of current

environment as resources are limited and requirements

are heavy. To overcome the problem deadline

constraint scheduling mechanism is proposed under

heterogeneous cloud computing. Reliability is a concern

which is tackled in the proposed literature considering

metric mean time between failures. Deadline sensitive

jobs are compared against finish time of jobs which is

calculated in advance and AHP is applied to determined

there completion time. AHP matrix indicates if jobs

satisfy deadline or not. Advance reservation is also used

within the proposed system to handle deadline

constraint jobs. Early finish time calculated in the

scenario is used to preempt the resources in case

resources become critically low and jobs cannot be

allotted to the clusters. To resolve the faults, progress

made at current machine is migrated to other machine

using check pointing approach. The result of the

proposed system shows improvement in terms Make

span and Flow time by 10%.

Index Terms- AHP, Deadline, federated cloud, Make

span, Flow time.

1. INTRODUCTION

Resource availability and job execution becomes

need of the hour in case of resource constraint

environment. (Khoshkholghi et al. 2017)Cloud

environment with homogeneous environment may

not be sufficient to execute jobs in time critical and

deadline sensitive (Li et al. 2012; Li et al. 2014)In

order to satisfy time or deadlines, advance

reservation becomes need of the hour. Advance

reservation ensures that job enters into the

environment. (Patel & Jethva 2013)To tackle the

issue, heterogeneous cloud consisting of multiple

providers must be considered for evaluation.

Resources in such a situation are collaborated within

the pool known as resource pool. (Pei et al. 2015)As

the jobs arrive within the system, their machine

requirements are matched against the pool. In case

pool has the sufficient resources then jobs are allotted

to the resources and resources are decreased from the

pool. This process continues until all the jobs are

allotted. The problem of deadline sensitive jobs

become vigorous since time criticality is considered.

system only if its requirements will be satisfied

otherwise jobs are prompted from the system. Overall

throughput is considerably decreased using advance

reservation.

Mean time between failure must be incorporated

within the job allocation in order to ensure execution

of maximum number of jobs without fault or

failure.(Schroeder & Gibson 2007; Guermouche et al.

2011) Fault tolerance alludes to right and nonstop

operation even within the sight of non-functional

resources. It is the craftsmanship and art of building

computing framework that keep on operating

attractively within the sight of faults. A fault tolerant

framework might have the capacity to endure at least

one fault composes including - transient, irregular or

perpetual component faults, programming mistakes,

administrator mistakes, or remotely actuated

surprises or physical damage. (Bautista Gomez et al.

2010; Salehi et al. 2016)In constant cloud

applications, preparing on computing hubs is done

remotely which has a high likelihood of event of

blunders. These occasions increment the requirement

for fault tolerance methods to accomplish

dependability for the constant computing on cloud

framework.

With the increase in cloud computing services, there

is a possibility that faults may occur which adversely

affects the cloud performance. These faults can be of

different kinds including:

© December 2018 | IJIRT | Volume 5 Issue 7 | ISSN: 2349-6002

IJIRT 147323 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 116

 transient, intermittent or changeless equipment

faults;

 software bugs and plan mistakes;

 Operator blunders;

 Externally actuated faults and blunders.

The proposed system considers federated cloud

environment to determine resource availability,

MTBF for faults and failures during job execution

and allotting jobs to resource with maximum MTBF.

Checkpointing approach is used to ensure backup of

progress made at current machine. AHP matrix is

used to determine job completion. Early finish time is

calculated to preempt the resources from the jobs

which are already finished. This ensures availability

of resources as and when required by the jobs. Rest

of the paper is organised as under: section 2 gives

literature survey of various job scheduling

mechanisms along faults and failure tackling

mechanism. Section 3 gives the experimental setup,

section 4 gives the methodology, section 5 gives the

performance comparison, section 6 gives the

conclusion and future scope and last section gives

references.

2. LITERATURE SURVEY

This section includes analysis of techniques used to

ensure compatible execution of jobs over the

resources. Fault tolerant strategy checkpointing is

discussed as it becomes part of the proposed system

as well.

2.1 Checkpointing for fault tolerance

(B. Egger, Y. Cho, C. Joe, E.Park 2016; El-sayed &

Schroeder 2014)The full checkpointing mechanisms

retain system’s complete running states frequently on

a storage platform, but in incremental checkpointing

the complete running states of a system are included

in first checkpoint and succeeding checkpoints only

retain pages that are updated since the last

checkpoint. (Zhou et al. 2017)Checkpointing data is

saved on local disk storage in local checkpointing,

therefore transient failure can be identified from local

checkpointing whereas checkpointing data is stored

on global storage which can be retrieved in new

storage node from global checkpointing in case of

permanent failure.

(Palaniswamy n.d.; B. Egger, Y. Cho, C. Joe, E.Park

2016)Coordinated checkpointing mechanisms

generally depend upon a collaboration of operating

system or user level runtime library support for

checkpointing whereas uncoordinated checkpointing

mechanisms depend upon logging messages. (Salehi

et al. 2016)Check-pointing can be Disk & Diskless,

which is done with the help of MPI. Disk based

stores data on global disk storage and is used for

node or network failure while diskless stores data on

local storage and is used for process or application

failure.

In addition to checkpointing strategy, job scheduling

is also critical to ensure load balancing. These

strategies including multiple objectives are given as

under:

2.2 Job Scheduling

(Xhafa et al. 2011) proposed hybridization of genetic

and tabu search mechanism for job allocation and

execution.(Rodger 2016; Elghirani et al. 2008) To

execute the jobs genetic approach is followed and to

locate the resource tabu search is used. Fitness

function is defined in terms of cost. The fitness

function thus has to be minimised and is achieved

through said literature. (Switalski & Seredynski

2014)proposed a generalized extremal optimization

(GEO) which is enhancement of genetic approach.

The discussed approach consists of two phases. In the

first phase, optimal virtual machine out of the

available machines is selected. In the second phase,

batches are scheduled to execute on selected virtual

machine. (Kliazovich et al. 2013) proposed a energy

aware job scheduling within the data centers. Energy

efficiency and network awareness is being presented

in this literature for achieving optimization in terms

of Makespan and Flowtime.

2.3 Metric for Measurements

(Kumar et al. 2014; Singh et al. 2012)The current

fault tolerance system in cloud computing consider

following parameters: throughput, response - time,

adaptability, execution, accessibility, usability,

reliability, security and related over - head.

 Throughput: It characterizes the quantity of

assignments whose execution has been finished.

Throughput of a framework ought to be high.

 Response Time: Time taken by a calculation to

react and its esteem ought to be made limited.

© December 2018 | IJIRT | Volume 5 Issue 7 | ISSN: 2349-6002

IJIRT 147323 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 117

 Scalability: Number of hubs in a framework does

not influence the fault tolerance limit of the

calculation.

 Performance: This parameter checks the viability

of the framework. Execution of the framework

must be upgraded at a sensible cost e.g. by

permitting worthy defers the reaction time can be

lessened.

 Availability and MTBF: Availability and mean

time between failure ensures system is available

as and when desired. Availability of a framework

is specifically master proportional to its

dependability. The likelihood a thing is working

at a given occurrence of time under characterized

conditions.

 Usability: The degree to which an item can be

utilized by a client to accomplish objectives with

adequacy, effectiveness, and fulfilment.

 Reliability and MTTR: This viewpoint means to

give right or worthy outcome inside a period

limited condition. MTTR specified the time

required to recover the system to its original

state.

 Overhead Associated: It is the overhead related

while executing a calculation. Overheads can be

forced as a result of assignment developments,

inter process or bury - processor correspondence.

For the effectiveness of fault tolerance strategy

the overheads ought to be limited.

 Cost Adequacy: Here the cost is just

characterized as a monitorial cost.

The discussed literature highlight the terms which are

considered for improvement in our work. The

proposed system is discussed in the next section

along with the experimental setup.

3. EXPERIMENTAL SETUP

Experiments corresponding to the proposed system

consist of 5 clusters with 128, 96 and 64 machines.

‘K’ is used as a constant parameter whose value is in

between 0.1 to 2. The jobs are fetched from a dataset.

The configuration corresponding to the proposed

system is given as under

Parameters Values

Jobs 200,100,50

Clusters 5

Machines 128,96,64

K 0.1 to 2

Speeds 1,2,3,4,5

Flowtime Initially 0

Makespan Initially 0

Table 1: Experimental Setup

4. PROPOSED SYSTEM

The proposed system consists of clusters which are

heterogeneous in nature. These clusters contain

machines or resources which are to be assigned to the

jobs. The resources before allocation is passed

through advance reservation scheme. In other words,

a special variable is associated with the machines

indicating whether they are already reserved or not.

In case resources are already reserved, then jobs must

wait. Early finish time becomes critical in the

scenario since it will be used to release the resources

held by jobs which are finished. AHP matrix is

maintained to determine the finish time of jobs.

Deadline is matched against the finish time to

determine fitness of the job and resource.

Checkpointing is established to enhance reliability

and measurement metric which is used is mean time

between failures. The proposed scheme is listed as

follows:

1. Input job list

 Job list can be obtained through dataset

 Or through user input

 Or through direct initialization

 K=0.5 or 2

Job Selection process(Advance Reservation)

Perform Job ordering by checking job requirement

against available machines and reject the jobs not

lying within sequence

Selection of processor

Check for Deadline and Max MTBF if found goto

step b.

Check for Security parameter (Max(Security(VM)) if

found goto step c

Processor selection on the basis of

Machine_available.

If

processori_available>processori+1_Available_Cluste

r

© December 2018 | IJIRT | Volume 5 Issue 7 | ISSN: 2349-6002

IJIRT 147323 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 118

Max_Available_Cluster=processori

Processor selection on the basis of MTTF

If processori_MTTF>processori+1_MTTZF

Min_MTTF_Processor=processori

Allocate job to Max_speed_processor and

Min_MTTF_processor

Check for deadline meet condition

Deadlinei=DeadLinei+Job_Arrival+K*Jobs_Burst_T

ime

If Dead_line_jobi>=Actual_Deadlinei

Obtain result in terms of Makespan and Flowtime

Else

Go to step 2

Check for availability processor

This is performed to allocate next job in sequence to

optimal processor

Availability_i=(Burst_time)/Speed

 If processor_availablei==true

Allocate the job and go to step4

c) Perform step 3 to 6 until all the jobs finish

execution

Results through this methodology are obtained in

terms of Makespan and Flowtime. The performance

analysis and results is given in the next section.

5. PERFORMANCE ANALYSIS AND RESULTS

This section gives the performance analysis in terms

of Makespan and Flowtime. Makespan is the time

taken to complete entire schedule of jobs and

Flowtime is the time taken to complete individual

job. The performance analysis is conducted by

varying the values of the parameters such as number

of jobs, processor and constant parameter k. Result is

obtained which is better as compared to existing

literature without considering AHP, MTBF and

deadline constraint. Obtained results are given as

under

Load Existing Makespan Proposed Makespan

1 7.07E+04 6.09E+04

2 8.25E+04 7.65E+04

3 2.47E+05 2.45E+05

Table 2: Comparison with the variation of load

As the load increases Makespan corresponding to

existing and proposed literature also increases. The

plots demonstrate the same.

 Figure 1: Plot corresponding to Makespan when load

is increased

Load impact on Flowtime is also observed. Flowtime

also increases as load increases. This is given in

terms of following table.

Load Existing Flowtime Proposed Flowtime

1 2.28E+04 2.17E+04

2 2.68E+04 2.63E+04

3 5.05E+04 4.95E+04

Table 3: Flowtime comparison

The comparison of Flowtime also show hike as load

increases. This variation is also depicted through the

plots as

Figure 2: Plot comparison of Flowtime with load

Variation is also observed as the number of processor

varied. The variation when processor varied is given

as under

Processor Existing

Makespan

Proposed Makespan

64 4.73E+07 3.60E+07

96 40146410 35813194

128 39523525 35013194

Table 4: Comparison of Makespan when processor

varies

The results indicates processor increase decreases the

Makespan which is also elaborated through the plots

as

© December 2018 | IJIRT | Volume 5 Issue 7 | ISSN: 2349-6002

IJIRT 147323 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 119

Figure 3: Plots in terms of Makespan when processor

varies

The results in terms of Flowtime when processor

increases is given as under

Processor

Existing Flowtime Proposed

Flowtime

64 33.03 E+07 2.50E+07

96 20146410 19029194

128 19523525 17229194

Table 5: comparison in terms of Flowtime when

processor changes

As the processor increases Flowtime decreases

considerably shown through the plots also

Figure 4: Comparison in terms of Flowtime when

processor increases

Constant metric K when varies between 0.1 to 2 also

yield distinct results in terms Makespan and

Flowtime. These result are given in terms of table as

K-min/K-

max

Existing

Makespan

Proposed

Makespan

0.5 4.73E+07 4.23E+07

1 59146410 58829194

1.5 69523525 67029194

Table 6: Makespan comparison when K is varied

between 0.5 to 1.5

Result in terms of plots is given as under

Figure 5: gives the comparison of Makespan obtained

in terms of K

Comparison in terms of Flowtime with variation in K

is given as under

Table 7: Comparison of Flowtime when K is varied

Kmin-

kmax

Existing flowtime Proposed

Flowtime

0.5 4.72E+07 4.62E+07

1 59096410 58779194

1.5 69473525 68979194

The Flowtime plots when K is distinct is given as

under

 Figure 6: Flowtime comparison when K is varied.

Overall performance analysis suggests that as

resources increases execution time decreases. The

random parameter variation considering reliability

also ensures least failures within the machines. Even

if failures do occur they are tackled using

checkpointing strategy.

Performance enhancement by the factor of 10% is

observed through the proposed methodology.

6. CONCLUSION AND FUTURE SCOPE

The parallel job allocation along with reliability

metric is need of the hour within advanced

computing system. This paper uses the Clusters,

© December 2018 | IJIRT | Volume 5 Issue 7 | ISSN: 2349-6002

IJIRT 147323 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 120

reliability metrics and job scheduling to achieve

optimal results in terms of Makespan and Flowtime.

Resource availability is ensured using the early finish

strategy. The resources are dynamically prompted

when the job becomes finished. Earlier resources

held by the job are not prompted as long it is in the

system causing lack of resource availability. Load

balancing if not successful and machine faulted then

checkpointing strategy is in place to restore the

system to the stable state. Performance is enhanced

by the margin of 10% which is significant proving

worth of the study.

In future this approach can be collaborated with

multiheuristic approach like particle swarm

optimization to enhance the results in terms of

Makespan and Flowtime further.

REFERENCES

[1] B. Egger, Y. Cho, C. Joe, E.Park, J.L., 2016.

Effcient Checkpointing of Live Virtual Machine

Migration”,. IEEE Transactions on Computers,

pp.3041–3054.

[2] Bautista Gomez, L. et al., 2010. Low-overhead

diskless checkpoint for hybrid computing

systems. 17th International Conference on High

Performance Computing, HiPC 2010.

[3] Elghirani, A. et al., 2008. Performance

enhancement through hybrid replication and

genetic algorithm co-scheduling in data grids.

AICCSA 08 - 6th IEEE/ACS International

Conference on Computer Systems and

Applications, pp.436–443.

[4] El-sayed, N. & Schroeder, B., 2014. To

Checkpointor Not to Checkpoint : Understanding

Energy-Performance-I / O Tradeoffs in HPC

Checkpointing.

[5] Guermouche, A. et al., 2011. Uncoordinated

checkpointing without domino effect for send-

deterministic MPI applications. Proceedings -

25th IEEE International Parallel and Distributed

Processing Symposium, IPDPS 2011, pp.989–

1000.

[6] Khoshkholghi, M.A. et al., 2017. Energy-

Efficient Algorithms for Dynamic Virtual

Machine Consolidation in Cloud Data Centers.

IEEE Access, 3536(c), pp.1–13.

[7] Kliazovich, D., Bouvry, P. & Khan, S.U., 2013.

DENS: Data center energy-efficient network-

aware scheduling. Cluster Computing, 16(1),

pp.65–75.

[8] Kumar, N. et al., 2014. Achieving quality of

service (QoS) using resource allocation and

adaptive scheduling in cloud computing with

grid support. Computer Journal, 57(2), pp.281–

290.

[9] Li, B. et al., 2014. Resource availability-aware

advance reservation for parallel jobs with

deadlines. , pp.798–819.

[10] Li, B. et al., 2012. Scheduling Strategies for

Deadline Constrained Coallocation Jobs in

Distributed Computing Environments. ,

6(February), pp.232–240.

[11] Palaniswamy, C., Analytical and Comparison

Incremental of Periodic State Checkpointing

Saving *. , pp.127–134.

[12] Patel, P.K. & Jethva, P.H.B., 2013. Priority

based scheduling for Lease management in cloud

computing. IEEE, 1(2), pp.193–196.

[13] Pei, J. et al., 2015. Scheduling jobs on a single

serial-batching machine with dynamic job

arrivals and multiple job types. Springer.

[14] Rodger, J.A., 2016. Informatics in Medicine

Unlocked Discovery of medical Big Data

analytics : Improving the prediction of traumatic

brain injury survival rates by data mining Patient

Informatics Processing Software Hybrid Hadoop

Hive. Informatics in Medicine Unlocked,

1(2015), pp.17–26. Available at:

http://dx.doi.org/10.1016/j.imu.2016.01.002.

[15] Salehi, M. et al., 2016. Two-State Checkpointing

for Energy-Efficient Fault Tolerance in Hard

Real-Time Systems. , pp.1–12.

[16] Schroeder, B. & Gibson, G. a., 2007. Disk

failures in the real world: What does an MTTF of

1,000,000 hours mean to you. Conference on

File and Storage Technologies (FAST),

(September), pp.1–16. Available at:

http://www.usenix.org/event/fast07/tech/schroed

er/schroeder.pdf.

[17] Singh, D., Singh, J. & Chhabra, A., 2012. High

availability of clouds: Failover strategies for

cloud computing using integrated checkpointing

algorithms. Proceedings - International

Conference on Communication Systems and

Network Technologies, CSNT 2012, pp.698–

703.

© December 2018 | IJIRT | Volume 5 Issue 7 | ISSN: 2349-6002

IJIRT 147323 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 121

[18] Switalski, P. & Seredynski, F., 2014. Scheduling

parallel batch jobs in grids with evolutionary

metaheuristics. Journal of Scheduling, 18(4),

pp.345–357. Available at:

http://dx.doi.org/10.1007/s10951-014-0382-0.

[19] Xhafa, F. et al., 2011. A GA+TS hybrid

algorithm for independent batch scheduling in

computational grids. Proceedings - 2011

International Conference on Network-Based

Information Systems, NBiS 2011, pp.229–235.

[20] Zhou, A., Sun, Q. & Li, J., 2017. Enhancing

Reliability via Checkpointing in Cloud

Computing Systems. IEEE, pp.108–117.

