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Abstract- Deep learning has revolutionized the 

technology industry. Modern machine translation, 

search engines, and computer assistants are all powered 

by deep learning. TensorFlow is used to do all its 

complex work very simple. TensorFlow is an open 

source software library for high performance numerical 

computation. Its flexible architecture allows easy 

deployment of computation across a variety of 

platforms (CPUs, GPUs, TPUs), and from desktops to 

clusters of servers to mobile and edge devices. 

Originally developed by researchers and engineers from 

the Google Brain team within Google’s AI organization, 

it comes with strong support for machine learning and 

deep learning and the flexible numerical computation 

core is used across many other scientific domains. This 

trend will only continue as deep learning expands its 

reach into robotics, pharmaceuticals, energy, and all 

other fields of contemporary technology. It is rapidly 

becoming essential for the modern software professional 

to develop a working knowledge of the principles of 

deep learning. 

 

Index Terms- Deep Learning, TensorFlow, LeNet, 

AlexNet, ResNet, Logistic Regression. 

 

1. INTRODUCTION 

 

Most deep architectures are built by combining and 

recombining a limited set of architectural primitives. 

Such primitives, typically called neural network 

layers, are the foundational building blocks of deep 

networks. In this article, we will provide in-depth 

introductions to such layers. Though, here, we will 

provide a brief overview of the common modules that 

are found in many deep networks. It is not meant to 

provide a thorough introduction to these modules. 

Rather, we aim to provide a rapid overview of the 

building blocks of sophisticated deep architectures to 

whet your appetite. The art of deep learning consists 

of combining and recombining such modules. We 

come to know different labels of an image and how 

it’s get reacted with machine learning algorithms.  

 

TENSOR FLOW 

Until recently, software engineers went to school to 

learn a number of basic algorithms (graph search, 

sorting, database queries, and so on). After school, 

these engineers would go out into the real world to 

apply these algorithms to systems. Most of today’s 

digital economy is built on complicated chains of 

basic algorithms arduously glued together by 

generations of engineers. Most of these systems are 

not capable of adapting. All configurations and 

reconfigurations have to be performed by highly 

trained engineers, rendering systems brittle. 

 

Machine Learning Eats Computer Science 

As the behaviour of software-engineered systems 

changes, the roles of software engineers will change 

as well. In some ways, this transformation will be 

analogous to the transformation following the 

development of programming languages. The first 

computers were painstakingly programmed. 

Networks of wires were connected and 

interconnected. Then punch cards were set up to 

enable the creation of new programs without 

hardware changes to computers. Following the punch 

card era, the first assembly languages were created. 

Then higher-level languages like Fortran or Lisp. 

Succeeding layers of development have created very 

high-level languages like Python, with difficult 

ecosystems of precoded algorithms. Much modern 

computer science even relies on auto generated code. 

Modern app developers’ use tools like Android 

Studio to auto generate much of the code they’d like 

to make. Each successive wave of simplification has 

broadened the scope of computer science by lowering 

barriers to entry. 

 

2. DIFFERENT LAYERS 

 

2.1 Fully Connected Layer  
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A fully connected network transforms a list of inputs 

into a list of outputs. The transformation is called 

fully connected since any input value can affect any 

output value. These layers will have many learnable 

parameters, even for relatively small inputs, but they 

have the large advantage of assuming no structure in 

the inputs. 

 

Figure 1: Fully connected Layer 

 

2.2 Convolutional Layer 

A convolutional network assumes special spatial 

structure in its input. In particular, it assumes that 

inputs that are close to each other spatially are 

semantically related. This assumption makes most 

sense for images, since pixels close to one another 

are likely semantically linked. As a result, 

convolutional layers have found wide use in deep 

architectures for image processing.  

Just like fully connected layers transform lists to lists, 

convolutional layers transform images into images. 

As a result, convolutional layers can be used to 

perform complex image transformations, such as 

applying artistic filters to images in photo apps. 

 
Figure 2: Convolutional Layer 

 

2.3 Recurrent Neural Network Layers  

Recurrent neural network (RNN) layers are 

primitives that allow neural networks to learn from 

sequences of inputs. This layer assumes that the input 

evolves from step to step following a defined update 

rule that can be learned from data. This update rule 

presents a prediction of the next state in the sequence 

given all the states that have come previously.  An 

RNN layer can learn this update rule from data. As a 

result, RNNs are very useful for tasks such as 

language modelling, where engineers seek to build 

systems that can predict the next word users will type 

from history. 

Figure 3: RNN Layer equation 

2.4 Long Short-Term Memory Cells 

The RNN layers presented in the previous section are 

capable of learning arbitrary sequence-update rules in 

theory. In practice, however, such layers are 

incapable of learning influences from the distant past. 

Such distant influences are crucial for performing 

solid language modelling since the meaning of a 

complex sentence can depend on the relationship 

between far-away words. The long short-term 

memory (LSTM) cell is a modification to the RNN 

layer that allows for signals from deeper in the past to 

make their way to the present. 

Figure 4: LSTM Layer 

 

3. DEEP LEARNING ARCHITECTURES 

 

There have been hundreds of different deep learning 

models that combine the deep learning primitives 

presented in the previous section. Some of these 

architectures have been historically important. Others 

were the first presentations of novel designs that 

influenced perceptions of what deep learning could 

do. In this article, we present a selection of different 
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deep learning architectures that have proven 

influential for the research community.  

 

3.1 Different Architectures 

a)LeNet 

The LeNet architecture is arguably the first 

prominent “deep” convolutional architecture. 

Introduced in 1988, it was used to perform optical 

character recoginition (OCR) for documents. 

Although it performed its task admirably, the 

computational cost of  the LeNet was extreme for the 

computer hardware available at the time, so the 

design  languished in (relative) obscurity for a few 

decades after its creation. 

 
Figure 5:  example for LeNet architecture 

a)AlexNet 

The ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) was first organized in 2010 as a 

test of the progress made in visual recognition 

systems. The organizers made use of Amazon 

Mechanical Turk, an online platform to connect 

workers to requesters, to catalogue a large collection 

of images with associated lists  of objects present in 

the image. The use of Mechanical Turk permitted the 

duration of a collection of data significantly larger 

than those gathered previously. The first two years 

the challenge ran, more traditional machine-learned 

systems that relied on systems like HOG and SIFT 

features (hand-tuned visual feature extraction 

methods) triumphed. In 2012, the AlexNet 

architecture, based on a modification of LeNet run on 

powerful graphics processing units (GPUs), entered 

and dominated thechallenge with error rates half that 

of the nearest competitors. This victory dramatically 

galvanized the (already nascent) trend toward deep 

learning architectures in computer vision. 

Figure 6:  example for AlexNet architecture 

 

b)ResNet 

Since 2012, convolutional architectures consistently 

won the ILSVRC challenge (along with many other 

computer vision challenges). Each year the contest 

was held, the winning architecture increased in depth 

and complexity. The ResNet architecture, winner of 

the ILSVRC 2015 challenge, was particularly 

notable; ResNet architectures extended up to 130 

layers deep, in contrast to the 8-layer AlexNet 

architecture. Very deep networks historically were 

challenging to learn; when networks grow this deep, 

they run into the vanishing gradients problem. 

Signals are attenuated as they progress through the 

network, leading to diminished learning. This 

attenuation can be explained mathematically, but the 

effect is that each additional layer multiplicatively 

reduces the strength of the signal, leading to caps on 

the effective depth of networks. The ResNet 

introduced an innovation that controlled this 

attenuation: the bypass connection. These 

connections allow part of the signal from deeper 

layers to pass through undiminished, enabling 

significantly deeper networks to be trained 

effectively.  

Figure 7:  example for ResNet architecture 

 

c)Neural Captioning Model 

As practitioners became more comfortable with the 

use of deep learning primitives, they experimented 

with mixing and matching primitive modules to 

create higher order systems that could perform more 

complex tasks than basic object detection. Neural 

captioning systems automatically generate captions 

for the contents of images. They do so by combining 

a convolutional network, which extracts information 

from images, with an LSTM layer that generates a 

descriptive sentence for the image. The entire system 

is trained end-to-end. That is, the convolutional 

network and the LSTM network are trained together 

to achieve the desired goal of generating descriptive 

sentences for provided images. This end-to-end 
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training is one of the key innovations powering 

modern deep learning systems since it lessens the 

need for complicated pre-processing of inputs. Image 

captioning models that don’t use deep learning would 

have to use complicated image featurization methods 

such as SIFT, which can’t be trained alongside the 

caption generator. 

 

d)One-Shot Models 

One-shot learning is perhaps the most interesting new 

idea in machine/deep learning. Most deep learning 

techniques typically require very large amounts of 

data to learn meaningful behaviour. The AlexNet 

architecture, for example, made use of the large 

ILSVRC dataset to learn a visual object detector. 

However, much work in cognitive science has 

indicated that humans can learn complex concepts 

from just a few examples. Take the example of baby 

learning about giraffes for the first time. A baby 

shown a single giraffe at the zoo might be capable of 

learning to recognize all giraffes she sees from then 

on. Recent progress in deep learning has started to 

invent architectures capable of similar learning feats. 

Such systems can learn to make meaningful 

predictions with very few data points. One recent 

paper used this idea to demonstrate that one-shot 

architectures can learn even in contexts babies can’t, 

such as in medical drug discovery. 

Figure 8:  example for One shot 

4. DEEP LEARNING FRAMEWORKS 

 

Researchers have been implementing software 

packages to facilitate the construction of neural 

network (deep learning) architectures for decades. 

Until the last few years, these systems were mostly 

special purpose and only used within an academic 

group. This lack of standardized, industrial-strength 

software made it difficult for non-experts to use 

neural networks extensively. This situation has 

changed dramatically over the last few years. Google 

implemented the DistBelief system in 2012 and made 

use of it to construct and deploy many simpler deep 

learning architectures. The advent of DistBelief, and 

similar packages such as Caffe, Theano, Torch, 

Keras, MxNet, and so on have widely spurred 

industry adoption.  

TensorFlow draws upon this rich intellectual his tory, 

and builds upon some of these packages (Theano in 

particular) for design principles. TensorFlow (and 

Theano) in particular use the concept of tensors as the 

fundamental underlying primitive powering deep 

learning systems. This focus on tensors distinguishes 

these packages from systems such as DistBelief or 

Caffe, which don’t allow the same flexibility for 

building sophisticated models.  

 

5. LIMITATIONS OF TENSORFLOW 

 

One of the major current weaknesses of TensorFlow 

is that constructing a new deep learning architecture 

is relatively slow (on the order of multiple seconds to 

initialize architecture). As a result, it’s not convenient 

in TensorFlow to construct some sophisticated deep 

architectures that change their structure dynamically. 

One such architecture is the TreeLSTM, which uses 

syntactic parse trees of English sentences to perform 

tasks that require understanding of natural language. 

Since each sentence has a different parse tree, each 

sentence requires a slightly different architecture. 

 

Figure 9:  TreeLSTM 



© February 2019 | IJIRT | Volume 5 Issue 9 | ISSN: 2349-6002 

IJIRT 147525 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  146 

 

While such models can be implemented in 

TensorFlow, doing so requires significant ingenuity 

due to the limitations of the current TensorFlow API. 

New frameworks such as Chainer, DyNet, and 

PyTorch  romise to remove these barriers by making 

the construction of new architectures lightweight 

enough so that models like the TreeLSTM can be 

constructed easily. Luckily, TensorFlow developers 

are already working on extensions to the base 

TensorFlow API (such as TensorFlow Eager) that 

will enable easier construction of dynamic 

architectures. One takeaway is that progress in deep 

learning frameworks is rapid, and today’s novel 

system can be tomorrow’s old news.  However, the 

fundamental principles of the underlying tensor 

calculus date back centuries , and will stand readers in 

good stead regardless of future changes in 

programming models.  

 

6. TENSORS 

 

We introduced the notion of scalars as rank-0 tensors, 

vectors as rank-1 tensors, and matrices as rank-2 

tensors. What then is a rank-3 tensor? Before passing 

to a general definition, it can help to think about the 

commonalities between scalars, vectors, and 

matrices. Scalars are single numbers. Vectors are lists 

of numbers. To pick out any particular element of a 

vector requires knowing its index. Hence, we need 

one index element into the vector (thus a rank-1 

tensor). Matrices are tables of numbers. To pick out 

any particular element of a matrix requires knowing 

its row and column. Hence, we need two index 

elements (thus a rank-2 tensor). It follows naturally 

that a rank-3 tensor is a set of numbers where there 

are three required indices.  

 
Figure 10:  Rank-3 tensor T 

The rank-3 tensor T displayed in the figure is of 

shape (N, N, N). An arbitrary element of the tensor 

would then be selected by specifying (i, j, k) as 

indices. There is a linkage between tensors and 

shapes. A rank-1 tensor has a shape of dimension 1, a 

rank-2 tensor a shape of dimension 2, and a rank-3 

tensor of dimension 3. By our definition, a column 

vector has shape (n, 1). Wouldn’t that make a column 

vector a rank-2 tensor (or a matrix)? This is exactly 

what has happened. Recall that a vector which is not 

specified to be a row vector or column vector has 

shape (n). When we specify that a vector is a row 

vector or a column vector, we in fact specify a 

method of transforming the underlying vector into a 

matrix. This type of dimension expansion is a 

common trick in tensor manipulation. 

Note that another way of thinking about a rank-3 

tensor is as a list of matrices all with the same shape. 

Suppose that W is a matrix with shape (n, n). Then 

the tensor Tijk = W1, ⋯,Wn consists of n copies of 

the matrix W. Note that a black-and-white image can 

be represented as a rank-2 tensor. Suppose we have a 

224 × 224-pixel black and white image.  

Then, pixel (i, j) is 1/0 to encode a black/white pixel, 

respectively. It follows that a black and white image 

can be represented as a matrix of shape (224, 224). 

Now, consider a 224 × 224 color image. The color at 

a particular pixel is typically represented by three 

separate RGB channels. That is, pixel (i, j) is 

represented as a tuple of numbers (r, g, b) that encode 

the amount of red, green, and blue at the pixel, 

respectively. r, g, b are typically integers  

from 0 to 255.  

It follows now that the color image can be encoded as 

a rank-3 tensor of shape (224, 224, 3). Continuing the 

analogy, consider a color video. Suppose that each 

frame of the video is a 224 × 224 color image. Then a 

minute of video (at 60 fps) would be a rank-4 tensor 

of shape (224, 224, 3, 3600). Continuing even 

further, a collection of 10 such videos would then 

form a rank-5 tensor of shape (10, 224, 224, 3, 3600). 

In general, tensors provide for a convenient 

representation of numeric data. In practice, it’s not 

common to see tensors of higher order than rank-5 

tensors, but it’s smart to design any tensor software 

to allow for arbitrary tensors. 

 

7. LOGISTIC REGRESSION 

 

7.1 Metrics for evaluating classification models  

Now that you have trained a classification model for 

logistic regression, you need to learn about metrics 
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suitable for evaluating classification models. 

Although the equations for logistic regression are 

more complicated than they are for linear regression, 

the basic evaluation metrics are simpler. The 

classification accuracy simply checks for the fraction 

of data points that are classified correctly by the 

learned model. In fact, 

With a little more effort, it is possible to back out the 

separating line learned by the logistic regression 

model. This line displays the cut-off boundary the 

model has learned to separate positive and negative 

examples. We display the learned classes and the 

separating line in Figure 11. Note that the line neatly 

separates the positive and negative examples and has 

perfect accuracy (1.0). This result raises an 

interesting point. Regression is often a harder 

problem to solve than classification. There are many 

possible lines that would neatly separate the data 

points in Figure 11, but only one that would have 

perfectly matched the data for the linear regression. 

 
FIGURE 11: VIEWING THE LEARNED CLASSES 

AND SEPARATING LINE FOR LOGISTIC 

REGRESSION 

 

8. CONCLUSION 

 

We have shown you how to build and train some 

simple learning systems in TensorFlow. We started 

by reviewing some foundational mathematical 

concepts including loss functions and gradient 

descent. We then introduced you to some different 

layers. Artificial intelligence has gone through 

multiple rounds of boomand- bust development. This 

cyclical development is characteristic of the field. 

Each new advance in learning spawns a wave of 

optimism in which prophets claim that human-level 

(or superhuman) intelligences are incipient. After a 

few years, no such intelligences manifest, and 

disappointed funders pull out. The resulting period is 

called an AI winter. Then we have discussed with 

frameworks and limitations of Tensors. Finally, we 

have discussed about classification in logistic 

regressions. In future we will implement some hybrid 

architecture layer for images in different tools.  
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