
© February 2019 | IJIRT | Volume 5 Issue 9 | ISSN: 2349-6002

IJIRT 147525 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 142

TensorFlow in Deep learning

1
Mrs.A.Pavithra,

 2
Mr.S.Murukanantha Prakash,

1
Assistant Professor,

Department of Computer Science, Sree Saraswathi Thyagaraja College, Pollachi

2
Student, Department of Computer Science, Sree Saraswathi Thyagaraja College, Pollachi

Abstract- Deep learning has revolutionized the

technology industry. Modern machine translation,

search engines, and computer assistants are all powered

by deep learning. TensorFlow is used to do all its

complex work very simple. TensorFlow is an open

source software library for high performance numerical

computation. Its flexible architecture allows easy

deployment of computation across a variety of

platforms (CPUs, GPUs, TPUs), and from desktops to

clusters of servers to mobile and edge devices.

Originally developed by researchers and engineers from

the Google Brain team within Google’s AI organization,

it comes with strong support for machine learning and

deep learning and the flexible numerical computation

core is used across many other scientific domains. This

trend will only continue as deep learning expands its

reach into robotics, pharmaceuticals, energy, and all

other fields of contemporary technology. It is rapidly

becoming essential for the modern software professional

to develop a working knowledge of the principles of

deep learning.

Index Terms- Deep Learning, TensorFlow, LeNet,

AlexNet, ResNet, Logistic Regression.

1. INTRODUCTION

Most deep architectures are built by combining and

recombining a limited set of architectural primitives.

Such primitives, typically called neural network

layers, are the foundational building blocks of deep

networks. In this article, we will provide in-depth

introductions to such layers. Though, here, we will

provide a brief overview of the common modules that

are found in many deep networks. It is not meant to

provide a thorough introduction to these modules.

Rather, we aim to provide a rapid overview of the

building blocks of sophisticated deep architectures to

whet your appetite. The art of deep learning consists

of combining and recombining such modules. We

come to know different labels of an image and how

it’s get reacted with machine learning algorithms.

TENSOR FLOW

Until recently, software engineers went to school to

learn a number of basic algorithms (graph search,

sorting, database queries, and so on). After school,

these engineers would go out into the real world to

apply these algorithms to systems. Most of today’s

digital economy is built on complicated chains of

basic algorithms arduously glued together by

generations of engineers. Most of these systems are

not capable of adapting. All configurations and

reconfigurations have to be performed by highly

trained engineers, rendering systems brittle.

Machine Learning Eats Computer Science

As the behaviour of software-engineered systems

changes, the roles of software engineers will change

as well. In some ways, this transformation will be

analogous to the transformation following the

development of programming languages. The first

computers were painstakingly programmed.

Networks of wires were connected and

interconnected. Then punch cards were set up to

enable the creation of new programs without

hardware changes to computers. Following the punch

card era, the first assembly languages were created.

Then higher-level languages like Fortran or Lisp.

Succeeding layers of development have created very

high-level languages like Python, with difficult

ecosystems of precoded algorithms. Much modern

computer science even relies on auto generated code.

Modern app developers’ use tools like Android

Studio to auto generate much of the code they’d like

to make. Each successive wave of simplification has

broadened the scope of computer science by lowering

barriers to entry.

2. DIFFERENT LAYERS

2.1 Fully Connected Layer

© February 2019 | IJIRT | Volume 5 Issue 9 | ISSN: 2349-6002

IJIRT 147525 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 143

A fully connected network transforms a list of inputs

into a list of outputs. The transformation is called

fully connected since any input value can affect any

output value. These layers will have many learnable

parameters, even for relatively small inputs, but they

have the large advantage of assuming no structure in

the inputs.

Figure 1: Fully connected Layer

2.2 Convolutional Layer

A convolutional network assumes special spatial

structure in its input. In particular, it assumes that

inputs that are close to each other spatially are

semantically related. This assumption makes most

sense for images, since pixels close to one another

are likely semantically linked. As a result,

convolutional layers have found wide use in deep

architectures for image processing.

Just like fully connected layers transform lists to lists,

convolutional layers transform images into images.

As a result, convolutional layers can be used to

perform complex image transformations, such as

applying artistic filters to images in photo apps.

Figure 2: Convolutional Layer

2.3 Recurrent Neural Network Layers

Recurrent neural network (RNN) layers are

primitives that allow neural networks to learn from

sequences of inputs. This layer assumes that the input

evolves from step to step following a defined update

rule that can be learned from data. This update rule

presents a prediction of the next state in the sequence

given all the states that have come previously. An

RNN layer can learn this update rule from data. As a

result, RNNs are very useful for tasks such as

language modelling, where engineers seek to build

systems that can predict the next word users will type

from history.

Figure 3: RNN Layer equation

2.4 Long Short-Term Memory Cells

The RNN layers presented in the previous section are

capable of learning arbitrary sequence-update rules in

theory. In practice, however, such layers are

incapable of learning influences from the distant past.

Such distant influences are crucial for performing

solid language modelling since the meaning of a

complex sentence can depend on the relationship

between far-away words. The long short-term

memory (LSTM) cell is a modification to the RNN

layer that allows for signals from deeper in the past to

make their way to the present.

Figure 4: LSTM Layer

3. DEEP LEARNING ARCHITECTURES

There have been hundreds of different deep learning

models that combine the deep learning primitives

presented in the previous section. Some of these

architectures have been historically important. Others

were the first presentations of novel designs that

influenced perceptions of what deep learning could

do. In this article, we present a selection of different

© February 2019 | IJIRT | Volume 5 Issue 9 | ISSN: 2349-6002

IJIRT 147525 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 144

deep learning architectures that have proven

influential for the research community.

3.1 Different Architectures

a)LeNet

The LeNet architecture is arguably the first

prominent “deep” convolutional architecture.

Introduced in 1988, it was used to perform optical

character recoginition (OCR) for documents.

Although it performed its task admirably, the

computational cost of the LeNet was extreme for the

computer hardware available at the time, so the

design languished in (relative) obscurity for a few

decades after its creation.

Figure 5: example for LeNet architecture

a)AlexNet

The ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) was first organized in 2010 as a

test of the progress made in visual recognition

systems. The organizers made use of Amazon

Mechanical Turk, an online platform to connect

workers to requesters, to catalogue a large collection

of images with associated lists of objects present in

the image. The use of Mechanical Turk permitted the

duration of a collection of data significantly larger

than those gathered previously. The first two years

the challenge ran, more traditional machine-learned

systems that relied on systems like HOG and SIFT

features (hand-tuned visual feature extraction

methods) triumphed. In 2012, the AlexNet

architecture, based on a modification of LeNet run on

powerful graphics processing units (GPUs), entered

and dominated thechallenge with error rates half that

of the nearest competitors. This victory dramatically

galvanized the (already nascent) trend toward deep

learning architectures in computer vision.

Figure 6: example for AlexNet architecture

b)ResNet

Since 2012, convolutional architectures consistently

won the ILSVRC challenge (along with many other

computer vision challenges). Each year the contest

was held, the winning architecture increased in depth

and complexity. The ResNet architecture, winner of

the ILSVRC 2015 challenge, was particularly

notable; ResNet architectures extended up to 130

layers deep, in contrast to the 8-layer AlexNet

architecture. Very deep networks historically were

challenging to learn; when networks grow this deep,

they run into the vanishing gradients problem.

Signals are attenuated as they progress through the

network, leading to diminished learning. This

attenuation can be explained mathematically, but the

effect is that each additional layer multiplicatively

reduces the strength of the signal, leading to caps on

the effective depth of networks. The ResNet

introduced an innovation that controlled this

attenuation: the bypass connection. These

connections allow part of the signal from deeper

layers to pass through undiminished, enabling

significantly deeper networks to be trained

effectively.

Figure 7: example for ResNet architecture

c)Neural Captioning Model

As practitioners became more comfortable with the

use of deep learning primitives, they experimented

with mixing and matching primitive modules to

create higher order systems that could perform more

complex tasks than basic object detection. Neural

captioning systems automatically generate captions

for the contents of images. They do so by combining

a convolutional network, which extracts information

from images, with an LSTM layer that generates a

descriptive sentence for the image. The entire system

is trained end-to-end. That is, the convolutional

network and the LSTM network are trained together

to achieve the desired goal of generating descriptive

sentences for provided images. This end-to-end

© February 2019 | IJIRT | Volume 5 Issue 9 | ISSN: 2349-6002

IJIRT 147525 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 145

training is one of the key innovations powering

modern deep learning systems since it lessens the

need for complicated pre-processing of inputs. Image

captioning models that don’t use deep learning would

have to use complicated image featurization methods

such as SIFT, which can’t be trained alongside the

caption generator.

d)One-Shot Models

One-shot learning is perhaps the most interesting new

idea in machine/deep learning. Most deep learning

techniques typically require very large amounts of

data to learn meaningful behaviour. The AlexNet

architecture, for example, made use of the large

ILSVRC dataset to learn a visual object detector.

However, much work in cognitive science has

indicated that humans can learn complex concepts

from just a few examples. Take the example of baby

learning about giraffes for the first time. A baby

shown a single giraffe at the zoo might be capable of

learning to recognize all giraffes she sees from then

on. Recent progress in deep learning has started to

invent architectures capable of similar learning feats.

Such systems can learn to make meaningful

predictions with very few data points. One recent

paper used this idea to demonstrate that one-shot

architectures can learn even in contexts babies can’t,

such as in medical drug discovery.

Figure 8: example for One shot

4. DEEP LEARNING FRAMEWORKS

Researchers have been implementing software

packages to facilitate the construction of neural

network (deep learning) architectures for decades.

Until the last few years, these systems were mostly

special purpose and only used within an academic

group. This lack of standardized, industrial-strength

software made it difficult for non-experts to use

neural networks extensively. This situation has

changed dramatically over the last few years. Google

implemented the DistBelief system in 2012 and made

use of it to construct and deploy many simpler deep

learning architectures. The advent of DistBelief, and

similar packages such as Caffe, Theano, Torch,

Keras, MxNet, and so on have widely spurred

industry adoption.

TensorFlow draws upon this rich intellectual his tory,

and builds upon some of these packages (Theano in

particular) for design principles. TensorFlow (and

Theano) in particular use the concept of tensors as the

fundamental underlying primitive powering deep

learning systems. This focus on tensors distinguishes

these packages from systems such as DistBelief or

Caffe, which don’t allow the same flexibility for

building sophisticated models.

5. LIMITATIONS OF TENSORFLOW

One of the major current weaknesses of TensorFlow

is that constructing a new deep learning architecture

is relatively slow (on the order of multiple seconds to

initialize architecture). As a result, it’s not convenient

in TensorFlow to construct some sophisticated deep

architectures that change their structure dynamically.

One such architecture is the TreeLSTM, which uses

syntactic parse trees of English sentences to perform

tasks that require understanding of natural language.

Since each sentence has a different parse tree, each

sentence requires a slightly different architecture.

Figure 9: TreeLSTM

© February 2019 | IJIRT | Volume 5 Issue 9 | ISSN: 2349-6002

IJIRT 147525 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 146

While such models can be implemented in

TensorFlow, doing so requires significant ingenuity

due to the limitations of the current TensorFlow API.

New frameworks such as Chainer, DyNet, and

PyTorch romise to remove these barriers by making

the construction of new architectures lightweight

enough so that models like the TreeLSTM can be

constructed easily. Luckily, TensorFlow developers

are already working on extensions to the base

TensorFlow API (such as TensorFlow Eager) that

will enable easier construction of dynamic

architectures. One takeaway is that progress in deep

learning frameworks is rapid, and today’s novel

system can be tomorrow’s old news. However, the

fundamental principles of the underlying tensor

calculus date back centuries , and will stand readers in

good stead regardless of future changes in

programming models.

6. TENSORS

We introduced the notion of scalars as rank-0 tensors,

vectors as rank-1 tensors, and matrices as rank-2

tensors. What then is a rank-3 tensor? Before passing

to a general definition, it can help to think about the

commonalities between scalars, vectors, and

matrices. Scalars are single numbers. Vectors are lists

of numbers. To pick out any particular element of a

vector requires knowing its index. Hence, we need

one index element into the vector (thus a rank-1

tensor). Matrices are tables of numbers. To pick out

any particular element of a matrix requires knowing

its row and column. Hence, we need two index

elements (thus a rank-2 tensor). It follows naturally

that a rank-3 tensor is a set of numbers where there

are three required indices.

Figure 10: Rank-3 tensor T

The rank-3 tensor T displayed in the figure is of

shape (N, N, N). An arbitrary element of the tensor

would then be selected by specifying (i, j, k) as

indices. There is a linkage between tensors and

shapes. A rank-1 tensor has a shape of dimension 1, a

rank-2 tensor a shape of dimension 2, and a rank-3

tensor of dimension 3. By our definition, a column

vector has shape (n, 1). Wouldn’t that make a column

vector a rank-2 tensor (or a matrix)? This is exactly

what has happened. Recall that a vector which is not

specified to be a row vector or column vector has

shape (n). When we specify that a vector is a row

vector or a column vector, we in fact specify a

method of transforming the underlying vector into a

matrix. This type of dimension expansion is a

common trick in tensor manipulation.

Note that another way of thinking about a rank-3

tensor is as a list of matrices all with the same shape.

Suppose that W is a matrix with shape (n, n). Then

the tensor Tijk = W1, ⋯,Wn consists of n copies of

the matrix W. Note that a black-and-white image can

be represented as a rank-2 tensor. Suppose we have a

224 × 224-pixel black and white image.

Then, pixel (i, j) is 1/0 to encode a black/white pixel,

respectively. It follows that a black and white image

can be represented as a matrix of shape (224, 224).

Now, consider a 224 × 224 color image. The color at

a particular pixel is typically represented by three

separate RGB channels. That is, pixel (i, j) is

represented as a tuple of numbers (r, g, b) that encode

the amount of red, green, and blue at the pixel,

respectively. r, g, b are typically integers

from 0 to 255.

It follows now that the color image can be encoded as

a rank-3 tensor of shape (224, 224, 3). Continuing the

analogy, consider a color video. Suppose that each

frame of the video is a 224 × 224 color image. Then a

minute of video (at 60 fps) would be a rank-4 tensor

of shape (224, 224, 3, 3600). Continuing even

further, a collection of 10 such videos would then

form a rank-5 tensor of shape (10, 224, 224, 3, 3600).

In general, tensors provide for a convenient

representation of numeric data. In practice, it’s not

common to see tensors of higher order than rank-5

tensors, but it’s smart to design any tensor software

to allow for arbitrary tensors.

7. LOGISTIC REGRESSION

7.1 Metrics for evaluating classification models

Now that you have trained a classification model for

logistic regression, you need to learn about metrics

© February 2019 | IJIRT | Volume 5 Issue 9 | ISSN: 2349-6002

IJIRT 147525 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 147

suitable for evaluating classification models.

Although the equations for logistic regression are

more complicated than they are for linear regression,

the basic evaluation metrics are simpler. The

classification accuracy simply checks for the fraction

of data points that are classified correctly by the

learned model. In fact,

With a little more effort, it is possible to back out the

separating line learned by the logistic regression

model. This line displays the cut-off boundary the

model has learned to separate positive and negative

examples. We display the learned classes and the

separating line in Figure 11. Note that the line neatly

separates the positive and negative examples and has

perfect accuracy (1.0). This result raises an

interesting point. Regression is often a harder

problem to solve than classification. There are many

possible lines that would neatly separate the data

points in Figure 11, but only one that would have

perfectly matched the data for the linear regression.

FIGURE 11: VIEWING THE LEARNED CLASSES

AND SEPARATING LINE FOR LOGISTIC

REGRESSION

8. CONCLUSION

We have shown you how to build and train some

simple learning systems in TensorFlow. We started

by reviewing some foundational mathematical

concepts including loss functions and gradient

descent. We then introduced you to some different

layers. Artificial intelligence has gone through

multiple rounds of boomand- bust development. This

cyclical development is characteristic of the field.

Each new advance in learning spawns a wave of

optimism in which prophets claim that human-level

(or superhuman) intelligences are incipient. After a

few years, no such intelligences manifest, and

disappointed funders pull out. The resulting period is

called an AI winter. Then we have discussed with

frameworks and limitations of Tensors. Finally, we

have discussed about classification in logistic

regressions. In future we will implement some hybrid

architecture layer for images in different tools.

REFERENCES

[1] Bharat, K.; Broder, A. (1998): A technique for

measuring the relative size and overlap of public

Web search engines. Computer Networks, 30(1–

7), pp. 107–117.

[2] Broder, A.; Kumar, R.; Maghoul, F.; Raghavan,

P.; Rajagopalan, S.; Stata, R.; Tomkins, A.;

Wiener, J. (2000): Graph structure in the Web.

Computer Networks, 33(1–6), pp. 309–320.

[3] Chakrabarti, S. (2000): Data mining for

hypertext: A tutorial survey. SIGKDD

explorations, 1(2), pp. 1–11.

[4] “A survey on Chromecasat digital device”

Journal of Emerging Technologies and

Innovative Research (ISSN: 2349-5162)

Published in Volume 5 Issue 10, October2018.

[5] “Multimedia and its Applications” International

journal for Research and Development in

Technology (ISSN: 2349-3585) Published in

Volume-10, Issue-5(Nov-18).

