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Abstract- In this work, a variational technique is applied 

to  fluid flow over a sheet. The heat and mass transfer 

effects have been investigated and analyzed by this 

technique. The flow fields inside the boundary layer are 

approximated as polynomial functions. Euler-Lagrange 

equations for the functional of variational principle are 

constructed. The non-linear boundary layer equations 

are simplified as simple polynomial equations in terms 

of momentum, thermal and concentration boundary 

layer thicknesses. The temperature, concentration 

profiles, local heat and mass transfer rates are analyzed 

and are compared with existing numerical results. The 

comparison shows remarkable accuracy. 

 

Index term- Gyarmati’s variational principle; boundary 

layer; heat and mass transfer; thermophoresis; thermal 

radiation. 

I. INTRODUCTION 

 

The prime objective of this work is to analyse the 

heat transfer enhancement of fluid flow over a sheet 

with radiation effect by using the field of 

thermodynamics of irreversible processes and to 

obtain numerical solution to heat and mass transfer 

with the help of a variation technique based on the 

Governing Principle of Dissipative Processes 

(GPDP).In many industrials, extrusion is an 

important process in manufacturing of products. The 

quality of these products solely depends on the heat 

transfer rate at the stretching sheets. Sakiad is  

analyzed the boundary layer. Flow over a moving 

continuous solid surfaces. Crane [2] found a closed 

form exact solution for Sakiadis problem. The effects 

of magneto hydrodynamics and thermal radiation on 

convective heat transfer play vital role in the 

phenomena of electrically conducting fluid past a 

heated surface and thermal processes involving high 

temperatures such as power generators, nuclear 

power plants etc. Swati analyzed these effects on 

boundary layer flow over an exponentially stretching 

sheet. In recent years, nano fluid which is a mixture 

of nano-sized particles suspended in a conventional 

fluid is used to enhance the heat transfer rate. The 

benefits of nano fluids are theoretically investigated 

by Choi. The xplanation for abnormal convective 

heat transfer enhancement in nanofluids. an analysis 

for laminar nanofluid flow over a stretching sheet. the 

boundary layer flow of a nanofluid over a non-

isothermal stretching sheet with magnetic and 

radiation effects. As suggested in Buongiorno model 

the two important slip mechanisms Brownian motion 

and thermophoresis  effects are considered in this 

boundary layer flow over a non-isothermal stretching 

sheet through quiescent nanofluidin the presence of 

radiation and constant magnetic flux density.  

Gyarmati‟s  variation technique has been employed 

and the results are given for the temperature profile, 

concentration profile, the local Nusselt number (heat 

transfer)and the Sherwood number (mass transfer) for 

various values of Prandtl number Pr, magnetic 

parameter ξ, wall temperature parameter n, radiation 

parameter Nr, the slip parameters Nb (Brownian 

effect), Nt (thermophoresis  effect) and Lewis number 

Le. The present results are compared with known 

numerical results and are found to be quite in 

agreement. The intention of this research work is to 

establish the fact that Gyarmati‟s principle is one of 

the exact and most general variational techniques in 

solving heat and mass transfer problems. 

Chandrasekar [8], Chandrasekar and 

Kasiviswanathan [9] have already applied 

Gyarmati‟svariational principle for steady and 

unsteady heat transfer and boundary layer flow 

problems. 

 

II. THE GOVERNING BOUNDARY LAYER 

EQUATIONS 

  

The system of steady, two dimensional and laminar 

boundary layer flow of a fluid over a sheet with 
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velocity U0 in x-direction is considered. The leading 

edge of the sheet is at x = 0 and the sheet is parallel 

to the x-axis. It is assumed that as y → , the quiescent 

fluid is with ambient temperature T and concentration 

C. By Boundary layer-Boussinesq approximations 

and with the assumption that all fluid properties  are 

constants, the boundary layer equations in the 

presence of thermal radiation are considered as 

follows, 
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subject to the boundary conditions  

y 0 u=  =ax,v=0 ,T=  =  +A  ,C=   

y   u=0,v=0,T=  ,C=                         (5) 

where u, v, T, C are the velocity of the fluid in the 

longitudinal direction, transverse direction, 

temperature and concentration of the fluid 

respectively. The symbols υ, κ, B0, f ρ , f c , τ, DB, 

DT, T0 are respectively the kinematic viscosity, 

electrical conductivity, externally imposed magnetic 

field in the y-direction, density and specific heat of 

the fluid, c is the ratio of nanoparticle heat capacity 

and base fluid heat capacity, It is  assumed that the 

temperature of the sheet T0 is greater than the 

ambient temperature Tλ. Using Rosseland 

approximation, the radiative heat flux is described by  

  = 
    

   

   

  
 , where σ*, k*are the Stefan-Boltzmann 

constant and mean absorption coefficient 

respectively. Linearization of the radiation ( 4 T ) in 

terms of temperature difference between the 

atmospheric level and the main flow as follows, 

By Taylor series, we obtain       
  + 4  

  (T-

       
           We assume that the lowest 

temperature differences within the main flow. 

Therefore the higher order terms are to be neglected, 

hence   = 4  
 T-3  

 . Thus, we have  = 
     

   

   

  

  
. 

 

III. GYARMATI‟SVARIATIONAL PRINCIPLE 

 

On the basis of irreversible thermodynamics, 

Gyarmati‟s “Governing Principle of Dissipative 

Processes” is given in its energy picture ( Gyarmati 

[10,11] ) as 

 ∫   (T -T -T )dV=0      (6) 

Here the energy dissipation   and dissipation 

potentials  ,   are given by   =   
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and   (  
  

  
)are heat, momentum and 

concentration fluxes respectively. The constants L‟s, 

R‟s represent conductivities and resistances. It is well 

known that „lnT ‟ is the proper state variable instead 

of T when the governing principle assumes energy 

picture. The variation principle (6) for the present 

problem takes the form 
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in which „l ‟ is the representative length of the 

stretching sheet. 

 

IV. METHOD OF SOLUTION 

 

The velocity, temperature and concentration fields 

inside the respective boundary layers are assumed as 

the following trial polynomials, 
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These profiles satisfy the following conditions  
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The unknown parameters  ,   and    are 

momentum, thermal and concentration boundary 

layer thicknesses and are to be determined by the 

variational principle. The trial functions (8) are 

substituted in the governing boundary layer equations 

(1-4) and on integration with respect to y and with 

the help of boundary conditions (9), the fluxes     ,    

and    are obtained. The expressions   and   remains 

same for any Prandtl number   But the energy flux Jq 

assumes different expressions for Pr ≤ 1 and Pr ≥ 1 

respectively. When Pr ≤ 1, the expression for Jq in 

the range   ≤ y ≤    is determined first and the 

expression for Jq in the range 0 ≤ y ≤    is obtained 

subsequently by matching the expression    of the 

two regions at the interface. Using the expressions 

   ,   and    along with the trial functions (8), the 

variation principle (7) is formulated. On integration 

with respect to y, the variation principle becomes as 
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where the notation ( ′ ) indicates the differentiation 

with respect to x. These variational principles (10) 

are found identical when   =  . Accordingly, the 

Euler-Lagrange equations are 
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where     represents the Lagrangian densities   and 

  respectively. Equations (11) are second order 

ordinary differential equations in terms of   ,    and 

  . The procedure for solving (11) can be 

considerably simplified by introducing the non-

dimensional boundary layer thicknesses   
 ,  

       
  

given by   =   
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 . The 

Euler-Lagrange equations to the variation principles 

(10) subject to this transformation are obtained as 

simple polynomial equations  
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The coefficients of these equations (12) depend on 

the independent parameters Pr,  , n, Nr, Nb, Nt and 

Le, where Pr = υ/α (Prandtl number),  ξ = κ  
 /    

(magnetic parameter), wall temperature parameter n, 

Nr =16    
 ∞/3  k (radiation parameter), 

Nb=   (     
    Brownian motion parameter),  

Nt=      -       (thermophoresis parameter) and 

Le = υ/DB (Lewis number).  Equation (12)1 is a 

simple polynomial equation in terms of momentum 

boundary layer thickness whose effectsdepend on the 

magnetic parameter ξ. And equations        are 

coupled equations in terms of thermal 

andconcentration boundary layer thicknesses  whose 

coefficients depend on   
  , Pr, n, Nr, Nb, Nt and Le. 

After obtaining the values of   
    

      and , the 

quantities of physical interest skin friction (shear 

stress), heat transfer (Nusselt number) and mass 

transfer (Sherwood number) are calculated 
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V. CONCLUSION 

 

By GPDP, governing partial differential equations are 

simplified as polynomial equations This variation 

technique offers a practicing engineer a rapid way of 

obtaining heat and mass transfer rates for any 

combination of these parameters. The advantage 

involved in this technique is that the results are 

obtained with the high order of accuracy and the time 

taken to solve the problem is certainly less when 

compared with more conventional methods. Hence 

the practicing engineers and scientists can apply this 

unique approximate technique as a powerful tool for 

solving boundary layer flow, heat and mass transfer 

problems. 
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