
© March 2019 | IJIRT | Volume 5 Issue 10 | ISSN: 2349-6002

IJIRT 147679 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 190

Software Engineering Basics & the Algorithmic DocM

Model for Software development

Azeem Uddin

B.tech (Computer Science & Engineering), Galgotias University, Greater Noida, Uttar Pradesh, India

Abstract- Software is a computer program that when

executed provide desired features, functions &

performance. Software engineering is a layered

technology with quality, process, methods & tools as it’s

crucial layers. The development of a software requires

proper documentation, analysis, planning, supervision

& management. Software engineering enables us to

build complex systems in a timely manner. It is the

application of engineering to the development of

software in a systematic method. Hence, this paper

provides a general description about Software

engineering & it’s basics. Software is developed with the

help of SDLC framework i.e. Software development

lifecycle that has many phases like requirement

gathering, feasibility study, system analysis, software

design, coding, testing etc. SDLC is a sequence of

activities that lead to the production of a software

product. So, this paper also aims to introduce a new

brand SDLC Model i.e. THE ALGORITHMIC

DOCUMENT MAINTENANCE MODEL. This Model

is described in a thorough manner covering phases,

advantages, significance & algorithmic approach.

Index Terms- Software Engineering, Software

development lifecycle (SDLC), Fundamentals of

Software Engineering, The Algorithmic DocM Model.

 INTRODUCTION

Software engineering is the combination of software

& engineering. Software refers to a program or set of

programs that when executed provide desired

features, functions & performance whereas

engineering is all about developing new products

using well-defined scientific methods & principles.

So, combining both the aspects, Software engineering

may be defined as an engineering branch that is

associated with the development of a software

product. The outcome of the software development

process is an efficient & reliable software product.

Functionality, reliability, efficiency, usability,

maintainability, portability, robustness & integrity are

some of the main software characteristics. Software

is developed with the help of SDLC framework i.e.

Software development lifecycle that has many phases

like requirement gathering, feasibility study, system

analysis, software design, coding, testing etc. SDLC

is a sequence of activities that lead to the production

of a software product. A software consumes

resources, budget & time. Development of a flexible

& efficient software product requires satisfactory

software project management. Software development

can be divided into two parts - Software creation &

Software project management. Software project

management is the art & science of planning &

leading software projects.

Software product is influenced by four P’s i.e.

People, Project, Process & Product. There are many

software development lifecycle models like waterfall

model, prototype model, spiral model, iterative

enhancement model & many more.

Software engineering: A layered technology

Software engineering is an engineering branch that is

associated with the development of a software

product. There are four layers that act as a base for

software engineering. Due to this reason, software

engineering is called as a layered technology. All the

four layers of software engineering are briefly

summarised below-

1. Quality: Quality refers to the fitness for purpose. It

is a subjective aspect. There are many software

quality attributes that software must possess. In fact,

the bedrock that supports software engineering is

quality focus.

2. Process: Process is one of the four P’s on which

software project management focuses. When a

software program is executed, it becomes a process.

© March 2019 | IJIRT | Volume 5 Issue 10 | ISSN: 2349-6002

IJIRT 147679 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 191

It is a framework that must be established for

effective delivery of software.

3. Methods: Focuses on HOW to build the software.

Each method consists of multiple tasks like

requirement analysis, testing, maintenance etc.

4. Tools: Tools are used to build up the software.

Tools provide automated/semi-automated support for

process & methods. For instance, CASE(Computer-

aided software engineering) tools are used to design

& implement applications.

Principles of software engineering

Principles are basic ideas or rules that explain or

control how something happens or works. Principles

in software engineering are necessary for uniformity,

discipline & output. Five principles of software

engineering are described below-

1. Think through the problem completely before

you try to implement a solution: This principle

states that firstly, one should understand the

problem thoroughly, then only he/she should

start implementing the solution because proper

understanding of the problem statement &

analysation process are necessary to find the

appropriate solution.

2. Divide & Conquer: Divide & Conquer approach

states that the entire problem must be divided

into sub-tasks for proper management. It is also

called modularization. This division of the whole

work increases the reliability, concurrent

execution & maintainability.

3. Keep it simple: It means that there is no need to

make the software process complicated.

Developers, project managers & the people who

are associated with the software product must

keep the software process simple & easy to

understand & implement.

4. What you produce, others will consume: It is

totally true that software products are made for

the users or customers. Developers make them in

accordance with the requirements & expectations

of the users. Hence, a software must be user-

friendly. User/Customer must be able to use the

software with ease.

5. Learn especially from your mistakes: All humans

make mistakes. There is nothing wrong in doing

mistakes but one should learn from his/her

mistakes. The same approach follows with

regard to software as well. The developers must

learn from their mistakes, their ultimate goal

must be to produce a quality software product &

they should fix the bugs/errors with great

attentiveness

The Algorithmic DocM Model for software

development

The DocM Model stands for Document Maintenance

Model. This model refers to a systematic & planned

approach for the development of a software. The

creation of a detailed document is the most crucial

aspect of this model.

BASIC STEPS (Phases) INVOLVED IN THE DocM

MODEL

There are many steps involved in the DocM model

that must be followed sequentially & with great

management. The various steps are explained below-

1. COMMUNICATION: The very first phase is

communication phase. In this phase, the customer

contacts or approaches the service provider or the

developer to express his/her desire of software

product. The user or customer also tries to negotiate

the terms at this step.

2. REQUIREMENT GATHERING: At this step,

requirements are gathered from the customer. It

focuses on WHAT not HOW. Discussion is carried

out between customer & developer. It is an activity

that helps to understand what problem has to be

solved & what customers expect from the software.

The foundation of this phase is effective

communication. There are many requirement

elicitation methods like interviews, brainstorming

sessions, Facilitated application specification

technique (FAST) etc. This step involves the practice

of collecting the requirements from users, customers

& other stakeholders.

3. FEASIBILITY STUDY: In this phase, it is

checked that whether the project is feasible

(Workable) or not. It concentrates on the operational

feasibility, technical feasibility & economic

feasibility. At last, a feasibility report is created that

specifies whether the project is practically possible or

© March 2019 | IJIRT | Volume 5 Issue 10 | ISSN: 2349-6002

IJIRT 147679 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 192

not. This step is just an assessment of the practicality

of a proposed system or project.

4. DCT analysis phase: Here, DCT stands for Design,

Coding & Testing. This phase is not about the actual

implementation, it is about the analysis & forming

conclusions. The development team focuses on-

a. DESIGN: It is all about the modelling techniques

like use case approach, Entity relationship diagram,

data flow diagram etc. The developer thinks which

model must be used to portray the functionalities,

behaviour & structure of the software system.

b. CODING: The development team decides which

programming language is the most suitable for the

proposed system. Actual coding is not started but a

general idea is set regarding the programming

methodologies. But, pseudo code or rough

estimations are possible.

c. TESTING: Testing is the combination of

verification & validation. But, at this step actual strict

testing is not started. Only the test criteria & test case

plan is created. More emphasis is given to the

principles & objectives of testing with regard to the

software project.

Hence, this DCT phase is only about analysis,

planning & estimation. It is not about the actual

implementation.

5. Writing Documentation: After the DCT analysis,

there comes the role of proper documentation. A

detailed document is created by the development

team that comprises the following information-

a. Software requirements

b. Requirement analysis report

c. Feasibility report

d. Design details

e. Pseudo code

f. Test strategy & test plan

g. Characteristics of the software product

So, this document comprises of all the necessary

details about the software product. The creation of

this document is a time consuming process because

all the details about requirements, design, coding &

testing are included in it. The ultimate objective at

this step is to generate a formal document that is

understandable to users.

6. Document approval or rejection phase: After

creating a final document, the developers show it to

the customer for customer satisfaction & feedback. If

the customer is satisfied with the document or he/she

approves the document, then the developers can start

the actual implementation or working from the design

phase to the maintenance phase. But, if the document

is not in accordance with the customer’s expectations

or the customer rejects the document, then a new

document is created & again it will be shown to the

customer until or unless the customer gets satisfied.

This process will be iterated till the creation of a

satisfactory document & after that it should be

verified by the customer. Once it is verified by the

customer, the actual working is started using required

tools & methods.

7. Delivery of software product to the customer:

Once the verification is complete, the developers try

their level best to build a high quality software. When

ready, this software is delivered to the customer &

further maintenance is taken into account.

ALGORITHMIC REPRESENTATION OF THE

DocM Model

START

a.Communication

b. Requirement gathering

c. Feasibility study

d. DCT analysis

e. Making of a formal Document

f. Verification of the document by the customer

(User)

g. If verified, then START ACTUAL WORKING

(IMPLEMENTATION) from design phase to testing

phase.

h. If not verified, then make a new Document &

iterate the process till the customer is satisfied.

i. Delivery of software product to the customer &

maintenance.

STOP

Advantages of the Algorithmic DocM Model

1. Algorithmic approach: This DocM model is

algorithmic in nature. It specifies the step by step

procedure for the development of a software product.

It focuses on input, output, effectiveness, generality

& ease of use.

2. Document-oriented: This model is document-

oriented as a detailed document is created & shown

to the customer before actual implementation of the

© March 2019 | IJIRT | Volume 5 Issue 10 | ISSN: 2349-6002

IJIRT 147679 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 193

software. Documentation is the written & retained

record of events that is very crucial in this world

where there are fickle-minded customers. Hence,

proper documentation improves the reliability,

maintainability & accuracy of the software product.

3. Customer Involvement: Customers (Users) are the

people who greatly influence the software building

process. So, in this model, there is more customer

involvement as after the creation of document, the

document is disclosed to the customers for their

feedback. It is done so as to gain the customer

confidence & to check the completeness, consistency

& correctness of the document.

4. Understanding System: Since a general idea

(Outline), behaviour, functionality & structure of the

software product is displayed through the easy

explanation & modelling techniques, the user get a

better understanding of the system.

Significance of the Algorithmic DocM Model

The Algorithmic DocM Model can be of utmost

importance to develop a user-friendly software. This

model emphasises on customer feedback &

satisfaction. It is simple & easy to understand as a

formal document is maintained in this process. This

document plays a vital role throughout the software

development cycle. It is an ALL IN ONE document

that includes details regarding design, coding, testing

etc. There is no need for a separate software

requirement specification document. This model is

Document-dependent. Written communication skills

& speaking skills are used by the developers to

develop the software using this algorithmic model. In

this model, a document is refined again & again

according to customer instructions & feedback, so

this model can also handle change. After the delivery

of software also, the document involved in this model

is refined & maintained with operation &

maintenance information.

In short, the Algorithmic DocM Model is a

systematic & planned way of building a software

product.

CONCLUSION

Software is an intangible product. The development

of software requires proper documentation, analysis,

planning, supervision & management. Software

engineering enables us to build complex systems in a

timely manner. It is the application of engineering to

the development of software in a systematic method.

The power of software engineering must not be

underestimated. With the help of software

engineering, high quality software can be produced.

Moreover, an effective software project management

can also help transfer the product from zero to hero.

Hence, this paper has explored the software

engineering basics & an efficacious

methodology/model for the development of robust &

reliable software.

In this high tech world where user is so fickle-

minded, building high quality software is not a

cakewalk. But, if correct strategies & managerial

aspects are followed, then quality software can surely

be maintained. Even more fundamentally, it is

important to recognize the need of software

engineering. The Algorithmic Document

Maintenance model described in the end sums this up

neatly.

ACKNOWLEDGEMENT

First & foremost, praises & thanks to the God for his

shower of blessings throughout my research work to

complete the research successfully.

I would like to express my deep & sincere gratitude

to my parents for their love, prayers, care & sacrifices

for educating & preparing me for my future. I would

also like to express my gratefulness to all my

academic colleagues & friends for their constant

encouragement.

Finally, my special thanks go to all the people who

have supported & encouraged me to complete the

research work directly or indirectly.

REFERENCES

[1] Rajib Mall, Fundamentals of Software

Engineering, PHI Publication.

[2] Pankaj Jalote, Software Engineering, Wiley.

[3] M. Cotterell, Software Project Management,

Tata McGraw-Hill Publication.

