
© April 2019 | IJIRT | Volume 5 Issue 11 | ISSN: 2349-6002

IJIRT 147943 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 531

Illustrative study of Artificial Intelligence Algorithms

Prof. Ajay Talele
1
, Jairaj Jangle

2
, Yashwant Kapgate

3
, Mayur Deogade

4,
 Prajwal Langde

5

1,2,3,4,5
Vishwakarma Institute of Technology, Pune

Abstract- This paper illustrates some Artificial

Intelligence algorithms such as Heuristics, Breadth-first

search(BFS), Depth First Search(DFS), Cryptarithmetic

Problem, A* Problem. Water Jug problem is a famous

problem in the field of Artificial intelligence and the

method used in our project is Heuristics. The BFS and

DFS Algorithm is implemented in our project. In this

paper, we proposed a solution to some of the basic AI

problems and then optimized by using UI. We also

showed in each algorithm the solution is reached faster

than similar algorithms. Additionally, we have also

developed a graphical user interactive application to

visualize the above-mentioned algorithms.

Index Terms- Artificial intelligence, Heuristics, Water

Jug Problem, Cryptarithmetic Problem, Breadth First

Search(BFS), Depth First Search(DFS), A*.

I. INTRODUCTION

It has become necessary to develop some methods to

solve a certain type of problems which can not be

efficiently solved by conventional computer

programming. Let us take an example of a chess

playing program. Theoretically, there are around

 legal moves possible in a game of chess.

Now it is practically impossible to program a

machine to handle such a large number of possible

moves. Thus, it is necessary to develop a machine

which is able to play the game of chess in a way

similar to humans. Thus came the evolution of

Artificial Intelligence algorithms.

There is no such term called “Unified Artificial

Intelligence Algorithm”. There are many artificial

intelligence algorithms developed but it is not

necessary that one algorithm can solve any sort of

problem. Thus it becomes necessary to be able to

recognize which algorithm to be applied to which

problem. In this paper, we have presented four types

of artificial algorithms namely Heuristics, Depth-

First, Breadth-First Search, Cryptarithmetic problem-

solving algorithm, A* algorithm. In addition to the

comparative discussion of the above-mentioned

algorithms, we have also developed an application

for visualizing the above-mentioned algorithms. This

gives the user an easier understanding of the

functioning of each algorithm. In the application, we

have added animations as each algorithm transits

through steps of the algorithms.

Section I: Introduction introduces the paper topic.

Section II: Heuristic Algorithm discusses the analysis

of heuristic algorithm and how water jug problem can

be solved using heuristics. Section III:

Cryptarithmetic problem discusses the crypt-

arithmetic problem in depth and how it can be solved.

Section IV: Depth-First Search explains DFS

algorithm with diagrams and how it proceeds and the

same goes for the next section, Section V: Breadth-

First Search. Next, Section VI: A* algorithm

discusses the types of pathfinding algorithms and

discusses A* algorithm in depth with pseudo code.

Section VII: Result provides some screenshot of our

application with an explanation of each.

II. HEURISTICS ALGORITHM

A Heuristic is a technique to solve a problem faster

than classic methods, or to find an approximate

solution when classic methods cannot. This is a kind

of shortcut utilized for optimality, completeness,

accuracy, or precision for speed. A Heuristic (or a

heuristic function) analyzes search algorithms. At

each branching step, it evaluates the information that

is available and makes a decision on which branch is

to be followed. It does so by ranking alternatives. The

Heuristic is any device that is often effective but does

not guarantee to work in every case.

Solving the Water Jug Problem

Heuristic solutions rely upon problem-solving

methods resulted from practical experience, they are

rules of thumb that try to estimate an acceptable,

computationally effective solution, as close as

possible to the optimal one. However, they do not

© April 2019 | IJIRT | Volume 5 Issue 11 | ISSN: 2349-6002

IJIRT 147943 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 532

present the guarantee that a solution will be obtained

at all. They are only believed to work in most

situations. There are specific heuristics that are

applicable to particular a situation, and general

heuristics that are applicable to a large range of

problems. Let us consider a heuristic for the

generalized water jugs problem: if the rest is lower

than the capacity of jug A, the problem has no

solution (obvious); if the rest is a multiple of the

greatest common divisor of A and B, the problem has

no solution (the solution results from combining the

differences between A and B; e.g. with A=6 and B=3,

it is impossible to obtain a rest equal to 2, because all

the differences will be multiples of three); since the

solution of this problem is generally based on the

water exchange between the two jugs in order to

obtain the differences, there are two strategies that

lead to the solution for any problem. Let valA and

valB be the quantities of the two jugs, respectively.

Let rest be the quantity that is to be obtained in the

first jug.

Strategy 1: while (valA != rest) { if (valB != B &&

valA == 0) FillA(); if (valB == B) EmptyB(); Pour

FromAtoB(); }

Strategy 2: while (valA != rest) { if (valA != A &&

valB == 0) FillB(); if (valA == A) EmptyA();

PourFromBtoA(); }

Fig. 1: Efficiency of the Heuristic method

In this way, building a solution tree is not required

and solving is done without additional memory costs.

However, since they are heuristic solutions, the

adequate strategy should be determined from case to

case. For example, if A=6, B=5 and the rest is 2, the

first strategy finds the solution in 6 steps, while the

latter does in 14 steps. If A=11, B=6 and the rest is 7,

the first strategy finds the solution in 24 steps, and

the latter in only 8.

III. CRYPT ARITHMETIC PROBLEM

Cryptarithmetic problem can be referred to as a

puzzle which consists of arithmetic operator

commonly addition where the digits are replaced by

English alphabets. The main Motto of the

cryptarithmetic problem is to map the letters to some

digits ranging from 0 to 9 with the constraints

provided by arithmetic that no two alphabets can

have the same digit or value from 0 to 9. All the

alphabets given in the problem statement should have

a unique digit different from one another and also the

arithmetic operator should be considered while

evaluating the solution[5]. This problem was very

popular during the 1930s in the Sphinx which is a

Belgium journal of recreational mathematics [6]. One

of the best solutions to the Cryptarithmetic problem

was published in July 1924 by Henry Dudeney in the

issue of Strand Magazine [7] which is shown in Fig

2.

Fig 2. Cryptarithmetic problem example

In the example above, the arithmetic operator

addition is used for assigning the digits to letters in a

way such that the solution exists and is arithmetically

correct. Here the solution can be O=0, M=1, Y=2,

E=5, N=6, D=7, R=8 and S=9 which gives the correct

solution for the problem. Hence the result can be as

shown in Fig. 2.

Fig 3. An acceptable solution to the problem in Fig.2

Pseudo code for Crypt arithmetic problem

1. Start by examining the rightmost digit of the

topmost row, with a carry of 0.[8]

2. If we are beyond the leftmost digit of the puzzle,

return true if carry doesn’t exist, otherwise false

3. If we are currently trying to assign a char in one

of the addends

 SEND

+MORE
MONEY

 9567
+1085
10652

© April 2019 | IJIRT | Volume 5 Issue 11 | ISSN: 2349-6002

IJIRT 147943 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 533

● If char already assigned, just recur on the

row beneath this one, adding value into the

sum

● If not assigned, then,

for (every possible choice among the digits

not in use) make that choice and then on the

row beneath this one, if successful, return

true

if unsuccessful, unmake assignment and try

another digit

● Return false if none of the assignment works

4. Else if try to assign a char in the sum

5. If char assigned & matches correct, recur on next

column to the left with carry if success return

true,

6. If char is assigned & if it doesn’t matches, return

false

7. If char is unassigned & if the correct digit is

already used, return false

8. If char unassigned & correct digit unused,

assign it and recur on next column to left with

carry, If success return true

9. Return false to trigger backtracking

Constraints of the Cryptarithmetic problem are as

follows:

1. The arithmetic operations are in decimal

numbers only so digits should vary from 0 to 9;

therefore, there must be a maximum of ten

different letters in the overall strings which is

being used.

2. All the same letters of the alphabets should use

the same unique digit and no two different letters

of the alphabets should be bounded to the same

decimal digit.

3. As the words will represent numbers, the first

letter of the word cannot be assigned to zero.

4. The resulting numbers should satisfy the

problem, meaning that the result of the first two

numbers (operands) under the specified

arithmetic operation (plus operator) should be

the third number.

IV. DEPTH FIRST SEARCH (DFS)

Depth-First Search (DFS) is one of this searching

method that is included of blind search. That is, the

search is done by ensuring all vertices have been

visited, but without the exact solution or an

intermediate solution. Especially for AI (Artificial

Intelligence) problems searching or tracking is one

method to solve general problems, Searching is a

process of looking for a solution of a problem

through a set of possible state space (state space) [9].

The main factor which is owned by the DFS

algorithm has its ability to find the nodes or vertices

that have not visited in depth, and data structure as

per Cormen et al. Stack have a unique role in DFS

that served to 'remember' or store a value in the

algorithm reaches a vertex particular. The DFS

algorithm uses the idea of backtracking so it’s called

a recursive algorithm also. Initially exhaustive

searches of all the nodes by going ahead is done else

by backtracking. This recursive nature of DFS can be

implemented using stacks[10]. Nodes are visited as

per Fig.3.

Fig. 3: Order in which nodes are visited. (DFS)

The DFS algorithm can be described as :

● Start from a starting node and push all its

adjacent nodes into a stack.

● Pop a node from stack to select the next node to

visit and push all its adjacent nodes into a stack.

● Check if the nodes that are visited marked then

repeat this same process until the stack is empty.

Checking the nodes that are visited will prevent you

from visiting the same node more than once. If

marking is not done then the same nodes are visited

more than once, then this algorithm may end up in an

infinite loop.

For algorithms like finding connected components,

topological sorting, generating words in order to plot

the limit set of a group, finding bi-connectivity in the

graph includes depth-first search as a building block

[11].

V. BREADTH FIRST SEARCH (BFS)

Breadth-first search (BFS) is an algorithm for

traversing or searching tree or graph data structures.

https://en.wikipedia.org/wiki/Limit_set
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Tree_data_structure

© April 2019 | IJIRT | Volume 5 Issue 11 | ISSN: 2349-6002

IJIRT 147943 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 534

It starts at the tree root and explores all of the

neighbor nodes at the present depth prior to moving

on to the nodes at the next depth level.

In this algorithm breadthwise traversing of the graph

is done as follows:

1. First, move horizontally and visit all the nodes of

the current layer

2. Move to the next layer

 Fig. 4: Order in which nodes are visited(BFS)

A graph can contain cycles, which may bring you to

the same node again while traversing the graph. To

avoid processing of the same node again, use a

boolean array which marks the node after it is

processed. While visiting the nodes in the layer of a

graph, store them in a manner such that you can

traverse the corresponding child nodes in a similar

order[12]. Nodes are visited as per Fig.4.

To make this process easy, a queue is used to store

the node and mark it as 'visited' until all its neighbors

(vertices that are directly connected to it) are

marked[11][13]. The queue follows the First In First

Out (FIFO) queuing method, and therefore, the

neighbors of the node will be visited in the order in

which they were inserted in the node i.e. the node

that was inserted first will be visited first, and so on.

Breadth-first search can be used to solve many

problems in graph theory such as Copying Garbage

collection, Cheney's algorithm, construction of the

failure function of the Aho-Corasick pattern

matcher, Testing bipartiteness of a graph.

VI. A* ALGORITHM

A pathfinding algorithm searches a graph by starting

at one vertex and exploring adjacent nodes until the

destination node is reached, generally with the intent

of finding the most optimal route. Pathfinding

algorithm consists of two phases

1. Finding the path between two given nodes.

2. Finding the most optimal path between the two

nodes.

Types of pathfinding algorithm:

1. Exhaustive.

2. Eliminatory.

Let's first look at what Exhaustive algorithms are.

1. Exhaustive pathfinding algorithms

The most primitive pathfinding algorithms are

Breadth-first and Depth-first. This algorithm finds the

path between two nodes by exhausting all the

possibilities, starting from a given node. These

algorithm run in O(|V| + |E|), or linear time, where V

is the number of vertices, and E is the number of

Edges between vertices.

Another yet complicated pathfinding algorithm for

finding the optimal path is the Bellman-Ford

algorithm, which yields the time complexity of

O(|V||E|), or quadratic time.

However, it is not necessary to examine all the

possible paths to find the optimum one.

2. Eliminatory pathfinding algorithms

The eliminatory algorithms consist of Dijkstra and

A* pathfinding algorithms. In this project, A*

algorithm is implemented due to the high time cost of

Dijkstra and the inability of Dijkstra to evaluate

negative edge weights.

A star algorithm:

A* is a variant of Dijkstra's algorithm. A* assigns a

weight to each open node which is equal to the

weight of the edge to that node in addition to the

approximate distance between that node and the

finish. This approximate distance is found by the

heuristic 1 and represents a minimum possible

distance between that node and the end. This enables

it to eliminate longer paths once an initial path is

found. If there exists a path of length x between the

start and finish, and the minimum distance between a

node and the finish is greater than the distance x, that

node does not need to be examined. A* uses this

heuristic to improve on the behavior relative to

Dijkstra's algorithm. When the heuristic evaluates to

zero, A* is equivalent to Dijkstra's algorithm[15]. As

the heuristic estimate increases in value and gets

closer to the true distance, A* continues to find

optimal paths but runs faster because it needs to

examine fewer nodes. When the value of the heuristic

https://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Aho-Corasick

© April 2019 | IJIRT | Volume 5 Issue 11 | ISSN: 2349-6002

IJIRT 147943 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 535

is exactly the true distance, A* examines the fewest

nodes.

A* f cost calculation equation: f(n) = g(n) + h(n)

Where:

g is the cost of the present node from the star point

excluding the unwalkable path.

h is the cost of the present node from the ending point

including the unwalkable path.

f is the resultant cost.

Fig 5: A* pseudo code[14]

VII. RESULT

We have developed an application for this

comparison. We have used QT platform to integrate

various graphical functionalities with C++ as

backend. Our application presents the user with

various Artificial algorithms in an interactive

demeanor. The application was developed on Linux

x64 platform and we have also deployed a stand-

alone executable package of our application which

can run on any Linux x64 based machine, for this

purpose we have used. AppImage container.

This application was developed with an objective to

present the users new to Artificial intelligence

subject, an interactive and graphical method of how

various artificial algorithms functions. With this

application one can readily understand the working of

the above-discussed algorithms namely: Water Jug

problem using Heuristics, Crypt-Arithmetic Depth-

First search, Breadth-First search and A* with a very

intuitive animation. Our application also lets the user

enter the input values to initiate the algorithm

working as an example the user can enter the initial

water levels of the first jug and the second jug along

with the volume of water that needs to be measured.

Following are some screenshots of our application.

Fig. 5: Home screen of our application.

The Home Screen of our application consists of four

buttons in the middle and a menu bar at the top,

These four buttons let the user switch to various

algorithms offered in our application. In the menu

bar, the user can jump from any screen to another

screen.

Fig. 6: Water Jug Problem

For developing the above water jug like graphics, we

have used a QProgressBar element in the application.

We have also added some animations when the

algorithms transitions through steps.

Fig. 7: Cryptarithmetic Problem

© April 2019 | IJIRT | Volume 5 Issue 11 | ISSN: 2349-6002

IJIRT 147943 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 536

To make the Crypt-Arithmetic screen of the

application, we have included three input fields in

which the user can enter the input query to the

cryptarithmetic problem. After clicking the Solve

button at the bottom of the text fields, the application

proceeds to solve the problem and displays the

solution in the text box at the right side of the screen.

Fig. 8: Depth-First and Breadth-First search.

For presenting the DFS and BFS algorithm we have

used a tree structure. In this tree, we have ten nodes

for both DFS and BFS. After clicking on the Start

button at the bottom of the tree diagram, our

application shows how both the algorithms proceeds,

DFS prioritizes depth while BFS prioritized Breadth.

Fig. 9: A* Algorithm.

The final page of our application presents the A*

algorithm. To present the A* algorithm we have

added a map structure and added a start point and an

end point. The blue region shows the searched region

and the green blocks shows the final calculated path.

On the right side, we have included the pseudo code

of the A* algorithm.

VIII. CONCLUSION

In the paper, we have described various artificial

intelligence: Heuristics, Cryptarithmetic solving an

algorithm, Depth-First Search, Breadth-First Search,

A* algorithm in brief with some application to which

each of them can be applied. This paper gives an idea

to recognize and relate algorithms to certain AI

problems. We have also developed an application to

give the user a graphical description of the working

of each mentioned algorithm.

REFERENCES

[1] Harris R. Creative Problem Solving: A Step by

Step Approach, Pyrczak, Los Angeles, 2002.

[2] Boldi P., Santini M., Vigna S. Measuring with

Jugs, Theoretical Computer Science, no. 282, pp.

259-270, 2002.

[3] Russell S. J., Norvig P. Artificial Intelligence: A

Modern Approach, Prentice Hall, Englewood

Cliffs, New.

[4] A Heuristic for Solving the Generalized Water

Jugs Problem Bulletin of the Polytechnic

Institute of Iasi, tome LI (LV), section

Automatic Control and Computer Science.

[5] Vinod Goel, Sketches of thought, MIT Press,

1995, pp. 87 and 88.

[6] Bonnie Averbach and Orin Chein, Problem

Solving Through Recreational Mathematics,

Courier Dover Publications, 2000, pp. 156.

[7] H. E. Dudeney, in Strand Magazine vol. 68 (July

1924), pp. 97 and 214

[8] Pseudo code for Crypt arithmetic problem from

https://www.google.com/amp/s/www.geeksforge

eks.org/solving-cryptarithmetic-puzzles-

backtracking-8/amp/

[9] Desiani, Anita and Arhami, Muhammad. 2006.

Konsep Kecerdasan Buatan. Yogyakarta,

Indonesia: C.V Andi Offset.

[10] Ms. Avinash Kaur, Ms. Purva Sharma,

Ms.Apurva Verma, International Journal of

Scientific and Research Publications, Volume 4,

Issue 3, March 2014.

[11] Hyejeong Ryu and Wan Kyun Chung, ”Local

Map-based Exploration using a Breadth-First

Search Algorithm for Mobile Robots” Springer,

INTERNATIONAL JOURNAL OF

PRECISION ENGINEERING AND

MANUFACTURING Vol. 16, No. 10, pp. 2073-

2080

[12] Maciej Kurant, Athina Markopoulou, Patrick

Thiran,” On the bias of BFS (Breadth First

© April 2019 | IJIRT | Volume 5 Issue 11 | ISSN: 2349-6002

IJIRT 147943 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 537

Search)” 2010 22nd International Teletraffic

Congress (lTC 22), IEEE, Amsterdam,

Netherlands.

[13] Maryia Belova, Ming Ouyang “ Breadth-First

Search with A Multi-Core Computer”, IEEE,

Conference, Lake Buena Vista, FL, USA

[14] A star algorithm through

https://www.youtube.com/watch?v=-L-

WgKMFuhE by Sebastian Lague.

[15] For detail A* understanding:

http://theory.stanford.edu/~amitp/GameProgram

ming/Heuristic

