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Abstract- Accurate tracking of facial tissue in thermal 

infrared imaging is challenging because it is affected not 

only by positional but also physiological (functional) 

changes. This paper presents a particle filter tracker 

driven by a probabilistic template function with both 

spatial and temporal smoothing components, which is 

capable of adapting to abrupt positional and 

physiological changes. The method was tested on 

tracking facial regions of subjects under varying 

physiological and environmental conditions in 25 

thermal clips. It demonstrated robustness and accuracy, 

outperforming other strategies. This new method 

promises improved performance in a number of 

biomedical applications that involve physiological 

measurements on the face, such as unobtrusive sleep 

and stress studies. 

 

Index Terms- Facial tracking, matte, sleep studies, 

stress studies, thermal imaging. 

 

I. INTRODUCTION 

 

IN the last few years, facial tracking in the thermal 

infrared spectrum received increasing attention. 

Initially, applications in surveillance and face 

recognition were the driving force, where thermal 

imaging has the distinct advantage of being 

insensitive to lighting conditions [1] [2]. Later, 

physiological variables, such as vital signs, proved 

measurable in this modality [3]–[6], which gave rise 

to applications in human–computer interaction (HCI) 

[7], medicine [8], and psychology [9]. The degree of 

success of such measurements depends on a tracking 

method that can reliably follow the tissue of interest 

over time. For example, in sleep studies, if the tracker 

momentarily loses the nasal region of interest (ROI), 

the generated breathing signal is far from accurate 

(see Fig. 1), which affects the ensuing analysis. Thus, 

the specification of a facial tracker in thermal infrared 

needs to be quite stringent. 

 
Fig.1. Tracker generated compared with ground-truth 

breathing signal. (a) Initial frame with the rectangular 

ROI centered on the nostrils. (b) and (d) When the 

tracker works well, the generated breathing signal is 

good. (c) When the tracker loses the ROI, the 

generated breathing signal is inaccurate.  

The proposed method uses a particle-filter tracker, 

which is driven by a template-based objective 

function. The choice has to do with the peculiarities 

of thermal imaging and the needs of the targeted 

applications. Tracking based on shape models [10] is 

not very appealing in facial thermal imaging, because 

the modality images function rather than structure. 

To give an example, consider the case of tracking 

nasal tissue in thermal infrared imagery for the 

purpose of computing breathing function. Under 

normal conditions, the nose is colder than the 

surrounding tissue due to convection from nasal air 

flow. This translates to a characteristic thermal shape 
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similar to the one appearing in visual (structural) 

images. At some point, an irritant reaches the 

subject’s nasal cavity, there is an allergic reaction 

that blocks air flow in the nostrils and breathing 

continues mainly through the mouth. Because air 

flow is severely curtailed, the temperature over the 

nasal tissue rises and the nose blends with the 

surrounding tissue in the imagery. The nose’s 

functionality has dramatically changed and so its 

characteristic shapes (see Fig. 2). In such cases where 

stochastic physiological changes affect thermal 

emission, a shape model tracker may encounter 

significant difficulties. Note that spatial resolution in 

thermal imagery is typically lower than that in visual 

imagery (640 × 512 pixels in our case). Edges in 

thermal imagery are fuzzy due to diffusion, 

complicating matters further. None of these factors is 

conducive to shape-based tracking. Finally, many of 

the targeted applications are in medicine and HCI. 

This necessitates a computationally ―light‖ tracker 

for real-time performance. For example, if the nasal 

tracking and signal extraction method were not real 

time, then it would be impossible for a medical 

technician to optimize the continuous positive airway 

pressure in a sleep intervention [11]. 

 
Fig. 2. (a) Thermal image of a subject with normal 

breathing function. The nasal area is at a contrast 

with the surrounding tissue. (b) Thermal image of the 

same subject a few minutes later, when his breathing 

function is impaired by an irritant. Notice the 

blending of the nasal area with the neighboring 

tissue. 

Although trackers based on shape models are not 

appropriate for the problem at hand, tracking 

methods based on statistical filtering, such as Kalman 

or particle filters, are quite appealing. In particular, 

we chose to proceed with particle filtering because in 

the context of sleep and stress studies of interest, the 

subjects exhibit infrequent and abrupt turns of the 

head, which are highly nonlinear. Indeed, particle 

filtering is not only a general mechanism free of 

explicit modeling, but it can also handle nonlinear 

motion in the predict-update loop. We opted to 

implement the update operation in the predict-update 

loop through a probabilistic template algorithm. We 

will demonstrate that this combination of particle 

filtering with a probabilistic template produces a fast, 

flexible, and accurate tracker, fulfilling the 

specifications of the application domain. 

 

II. METHODOLOGY 

 

 We use particle filtering to track the ROI’s position 

in the current frame, based on template matching. We 

denote the motion state of the tracker at time t by Xt 

and its observations by Zt. The state of the tracker 

consists of three variables Xt = (xt,yt,θt), where xt 

and yt are the spatial coordinates of the ROI’s 

centroid and θt is the ROI’s rotation angle. The 

observation Zt refers to the pixels in the current 

frame. The particle filter tracker uses N = 100 

particles (candidate ROIs) in a single iteration per 

frame. We resample particles for each frame 

according to 

    Xt=Xt−1 + Vt                                 (1) 

where Vt is a 2-D independent and identically 

distributed Gaussian noise process. The mean of Vt is 

zero and the variance is one of the parameters that 

can be adjusted to ensure an efficient filter 

performance. 

 
Fig. 3. Illustration of algorithmic flow. (a) First, the 

likely current ROI is selected based on a MAP 
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estimate (particle filtering). (b) Then, the template is 

updated based on the formation of a Matte from 

stable/unstable seeds, the previous template, and the 

MAP ROI estimate. The updated template is used in 

the next time step. 

To this end, a mask matrix αt is constructed with the 

following properties.  

1) It has the same size as the template. This one-to-

one correspondence between the template and the 

mask is used to identify which template pixels need 

to be updated. 

2) Each entry in the mask matrix is a number in the 

range [0, 1] indicating the probability that the 

corresponding pixel is stable. The larger the 

probability is, the less the pixel needs to be updated. 

The most stable and the most unstable pixels in the 

Matte provide the seed values, which initialize the 

current Matte computation.  

3) The mask takes into account spatial information 

(i.e., changes occur in regions and not in isolated 

pixels), providing a smooth outcome on the image 

plane.  

4) The mask also takes into account temporal 

information (i.e., changes occur in finite time 

windows), providing a smooth outcome along the 

time line. The user manually inputs the initial 

template in the first frame, by selecting a rectangular 

ROI with the mouse. Next, for each incoming frame, 

the method automatically performs the template 

updating according to the following steps (see Fig. 

3).  

Step 1: Extraction of stable and unstable seeds. Step 

2: Computation of the spatiotemporal Matte (STM.  

Step 3: Update of the template. The thus formed 

template correlates with candidate ROIs in the next 

time step to form the weights in the particle filtering 

process [see (3)]. 

 

III. EXPERIMENTAL DESIGN, RESULTS, AND 

ANALYSIS 

 

For the purpose of testing the STM template update 

method in the context of particle filter tracking, we 

used 25 thermal clips from 24 subjects. The clips 

were generated as part of sleep studies (subjects 

identified as Sxx and Lxx) [8], a stress study related 

to mock-crime interrogation (subjects identified as 

DxxxIS ) [9], and a stress study related to inanimate 

laparoscopic surgical training (subjects identified as 

DxxxSS ), as per the approval of the appropriate 

institutional review boards. The set included clips 

that had at minimum ∼6500 and at maximum 

∼49500 frames. At the recoding speed of 30 

frames/s, these clips ranged from ∼3.5 to ∼27.5 min 

in duration. From each thermal clip, challenging 

segments that featured significant positional and/or 

physiological change were selected for facial 

tracking; in some cases, these segments were as long 

as ∼8000 frames (∼5 min). The targeted facial areas 

included the nostrils, where vital physiological 

function is resident, or the periorbital, supraorbital, or 

maxillary regions where sympathetic activation is 

manifested. The STM particle filter tracker was 

compared with the online appearance model (OAM) 

tracker reported in [13] and the zero-one particle 

filter tracker reported in [16]. The trackers optimized 

three state variables, which served as ROI 

descriptors. These were (x,y) for translation and φ for 

rotation on the image plane. The templates in all 

three trackers were formed out of normalized thermal 

values. All three tracking methods achieved real-time 

(>25 frames/s) performance on a PentiumIV 4-core 

computer, with 4 GB memory. A short commentary 

about each method and the rationale for its inclusion 

in the benchmarking set is given in the following.  

1) STM method: This is the method proposed in this 

paper that combines the agility of the particle filter 

framework with the sophistication of a 

spatiotemporal smoothing template. 

2) OAM method: This is an advanced template 

method applied in visual facial tracking [13]. Thus, it 

can serve as a representative of noteworthy 

approaches from the relevant visual imaging 

literature. The method’s statistical template is 

formulated as a mixture of three components [13], 

namely a stable component (S), a wandering 

component (W), and an outlier (L) component. The 

stable component captures the portion that is stable 

over time. It follows a normal distribution, the mean 

and variance of which are updated at every time step. 

The wandering component represents sudden 

appearance change. The outlier component is for 

short time occlusions. The method is probabilistic in 

nature but has no assumptions about spatial and 

temporal dependence. 

3) Zero-One method: This is a method that combines 

the agility of the particle filter framework with the 

simplicity of a deterministic template [16]. It was 
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recently used for facial tracking in thermal infrared. 

Therefore, it demarcates progress in the particular 

domain and can demonstrate the clear benefit of 

using more sophisticated templating to drive the 

particle filter loop.  

The particle filter mechanisms of the Zero-One and 

the STM methods featured identical 

parameterizations. For every subject, all three 

trackers were tasked to track a selected facial tissue 

(ROI) from the exact same initial frame.  

 

A. Qualitative Results  

In thermal facial imaging, there are two major factors 

that affect the tracker’s performance: head motion 

and physiological changes. The first factor alters the 

ROI location, while the second factor affects the 

pixel values within the ROI. For this reason, our 

dataset features subjects that exhibited large/small 

changes in the position or/and the physiology of the 

ROI. Accordingly, we split the dataset into three 

groups reflective of three distinct operational 

scenarios. 

 

1) Scenario 1: Subjects that exhibited large changes 

in position and small changes in physiology.  

2) Scenario 2: Subjects that exhibited small changes 

in position and large changes in physiology.  

3) Scenario 3: Subjects that exhibited large changes 

both in position and physiology.  

Fig. 4 shows a panorama of all subjects in the dataset 

categorized per operational scenario. Two 

characteristic thermal shots are shown for each 

subject with the STM tracker reliably tracking a 

facial tissue of interest. This figure gives a visual 

insight to the diversity of experimental circumstances 

that STM can negotiate. Fig. 5 shows comparative 

tracker performance for a case representative of 

Scenario 3, where large positional and physiological 

changes occur. The signals represent the evolution of 

the translational and rotational errors of STM, OAM, 

and zero-one regarding the tracking of subject’s 

D009IS nasal ROI. STM performs flawlessly in 

terms of translational accuracy and exhibits only 

small rotational errors in a short interval. OAM 

exhibits moderate translational errors and large 

rotational errors for extended periods of time. Zero-

one maintains translational accuracy but exhibits 

significant rotational inaccuracy. This figure gives a 

dynamic sense of tracker performance, associating 

error numbers with visual impressions. 

Fig. 4. Panorama of characteristic thermal shots (two per subject) from 24 out of the 25 thermal clips in the dataset, 

categorized per operational scenario. 
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Fig. 5. Evolution of translational and rotational tracking errors for STM, OAM, and zero-one for subject D009IS. 

Thermal snapshots are indexed to representative points in the error signals to enable association with the nasal 

tracker’s (black box) position in the actual runs. 

 

B. Quantitative Results  

To quantify tracker performance, we need to compare 

the tracker’s ROI with the ground-truth ROI 

throughout the time line. In medical imaging, the 

ground-truth data are usually obtained by manually 

segmenting the ROI in each frame. With thousands of 

frames in the dataset, however, manual ground 

truthing was not practical. For this reason, we 

adopted a different strategy. We used each of the 

three trackers to generate tracking results. We 

examined the results and where each tracker appeared 

to have failed, we manually repositioned the tracker 

and reinitiated tracking from that point onward, to 

correct the error. At the end, we formed ground-truth 

trackers as the means of the individual corrected 

trackers. Tracking performance correlates to the 

Euclidean distance and angular difference between 

the ground-truth ROI and the ROI that each of the 

three competing methods produces. The smaller the 

Euclidean distance and angular difference are, the 

better. The 25 clips of the dataset when partitioned 

according to Scenario 1, Scenario 2, and Scenario 3 

provide 8, 9, and 8 clips, respectively. Fig. 6(a) 

shows a graphical representation of the distribution of 

translational (Euclidean) errors per tracking method 

and operational scenario. As the plot indicates, the 

STM approach outperforms the other two template 

update strategies in all scenarios. Both the OAM and 

Zero-One methods appear to have particular 

difficulties with large combined positional and 

physiological changes (Scenario 3). Fig. 6(b) shows a 

graphical representation of the distribution of 

rotational errors per tracking method and operational 

scenario. STM still outperforms the other two 

methods across the spectrum, but its relative error 

magnitude increased with respect to the translational 

error. To statistically verify these indications, a series 

of hypotheses tests (at 0.05 level of significance) 

were performed to check how the means of the 

translational and rotational error distributions differ 
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between methods for each of the scenarios in the 

database. Let us denote by μT S ,μT O , and μT Z the 

means 

 
Fig. 6. (a) Boxplots of the translational (Euclidean) 

error distributions per tracking method and 

operational scenario for all subjects. (b) Boxplots of 

the rotational error distributions per tracking method 

and operational scenario for all subjects. (Scenario 1: 

large position and small physiology changes, 

Scenario 2: small position and large physiology 

changes, Scenario 3: large position and large 

physiology changes). 

of the translational error distributions for the STM, 

OAM, and zero-one strategies, respectively. 

Accordingly, let us denote by μRS ,μRO , and μRZ 

the means of the rotational error distributions for the 

STM, OAM, and zero-one strategies, respectively. 

The only instances where the tests fail to reject the 

null hypotheses are for subjects L02, L06, and L08, 

where the three competing trackers appear to perform 

on par. In all other cases, mean performance differs 

significantly among trackers, with STM clearly 

outperforming the other two. Note that L02, L06, and 

L08 are all sleep study cases, where tracking is not as 

challenging as in stress study cases. Fig. 7 gives a 

graphical representation of the mean positional and 

rotational tracking errors per subject for the three 

competing tracking methods; it visually correlates 

with the outcome of the statistical tests.  

 

A. Benefit of Temporal Smoothing  

To specify the beneficial effect of temporal 

smoothing, a simulation was run where a thermal 

nasal region was translated only in the x-direction, 

while the y-direction and angle of rotation φ were 

kept constant. The region featured semiperiodic 

fluctuation in temperature akin to the effect of 

breathing. This region was tracked first with a 

particle filter tracker driven by the classical Matte 

formula with spatial smoothing only. Then, it was 

tracked with the same particle filter tracker but driven 

by STM, i.e., the modified Matte formula with both 

spatial and temporal smoothing. The trajectory results 

in Fig. 8 demonstrate the fault oscillation introduced 

in the y and rotational dimensions by the classical 

Matte method.  

 

B. Sensitivity Analysis 

 In the Matte template strategy, the values of the 

nuisance parameters λ1 and λ2 (λ1 < λ2 ) determine 

the most stable and unstable pixels in the current 

frame, which are used as seeds [see (5)]. In this 

study, the following parameterization was used: λ1 = 

5 and λ2 = 20. Note that the temperature values were 

normalized in the 0–255 range. An experiment was 

performed to test the sensitivity of the STM method 

with respect to the λ parameters. 

 
Specifically, a representative clip from each of the 

three operational scenarios (Scenario 1: D011IS -

nasal, Scenario 2: D225IS -periorbital, and Scenario 

3: D016IS -nasal) was selected. The tracker of the 

STM template update method was run on these clips 

multiple times, varying at each iteration the values of 

λ1 and/or λ2 . Values for the tuple (λ1 , λ2 ) were 

drawn from the sets λ1 ∈ {2,5,8} and λ2 ∈ 

{15,20,25}, providing nine different pairs. Thus, nine 

runs for every selected subject were produced, each 

one providing an error distribution of the Euclidean 

distance and rotational difference between the 

tracked and ground-truth ROIs. Tables I and II give 

the mean translational and rotational errors for each 

of the three clips and every case of the (λ1 , λ2 ) 

parameter choices, respectively.  

The mean distance value of the tracker’s ROI from 

the groundtruth position appears to be rather stable 

for a wide range of parameter choices, indicating that 

the method is not very sensitive. The sensitivity 
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increases (and the performance deteriorates) when 

the values for the λ parameters get close. In this case, 

the method identifies many of the ROI pixels as seeds 

and starts losing its probabilistic (smoothing) 

advantage. An example is the case of the pair (8,15) 

in Table I that features the highest mean errors in all 

selected subjects. 

 
Fig. 7. Mean translational and rotational errors per 

subject for each competing tracking method grouped 

by operational scenario. The STM method 

consistently yields the smallest mean errors. 

 
Fig.8.Comparative nasal ROI trajectories 

(decomposed into the x,y, and φ dimensions) in a 

controlled simulation experiment. Light solid 

trajectories were produced by a particle filter tracker 

operating on a legacy Matte with spatial smoothing 

only. Dark dotted trajectories were produced by a 

particle filter tracker operating on a Matte with both 

spatial and temporal smoothing. 

 

IV. CONCLUSION 

 

This paper presents a new probabilistic template 

update method that when drives a particle filter 

tracker is capable of producing sophisticated tracking 

behavior in thermal facial imaging. Specifically, the 

method can cope with both large positional and 

physiological changes, something that other methods 

from the thermal or visual domain fail to do. The 

power of the method stems from the spatial and 

temporal smoothness components of the template that 

capture well natural thermo physiological 

characteristics. The new approach was tested on a 

dataset consisting of 25 thermal clips, thousands of 

frames each, featuring a variety of conditions that 

naturally occur in practice. The method promises 

improved performance in a number of biomedical 

applications, where unobtrusive physiological 

measurements on the face are preferred (e.g., sleep 

and stress studies). Note that in the case the subject’s 

head exhibits frequent and significant out of plane 

rotation and movement, the resulting physiological 

signal will not be accurate as this is outside the 

tracker’s operational scenario. Fortunately, for the 

targeted applications, this is rarely the case. This is 

obvious for sleep studies. It is also true for stress 

studies, where the subject stays put, maintaining (by 

design) directional attention to the stimulus or the 

interviewer. 

REFERENCES 

 

[1] S. Kong, J. Heo, B. Abidi, J. Paik, and M. Abidi, 

―Recent advances in visual and infrared face 

recognition—a review,‖ Comput. Vis. Imag. 

Understand, vol. 97, pp. 103–135, 2005. 

[2] C. Eveland, D. Socolinsky, and L. Wolff, 

―Tracking human faces in infrared video,‖ Imag. 

Vis. Comput., vol. 21, pp. 579–590, Aug. 2003. 

[3] N. Sun, M. Garbey, A. Merla, and I. Pavlidis, 

―Imaging the cardiovascular pulse,‖ in Proc. 

IEEE Comput. Soc. Conf. Comput. Vis. Patt. 

Recognit, San Diego, CA, 2005, vol. 2, pp. 416–

421. 

[4] N. Sun, I. Pavlidis, M. Garbey, and J. Fei, 

―Harvesting the thermal cardiac pulse signal,‖ in 

Medical Image Computing and Computer-

Assisted Intervention, (Lecture Notes in 

Computer Science Series). vol. 4191, New York: 

Springer-Verlag, 2006, pp. 569–576. 



© May 2019 | IJIRT | Volume 5 Issue 12 | ISSN: 2349-6002 

IJIRT 148083 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 327 

 

[5] R. Murthy and I. Pavlidis, ―Noncontact 

measurement of breathing function,‖ IEEE Eng. 

Med. Biol. Mag., vol. 25, no. 3, pp. 57–67, 

May/Jun. 2006. 

[6] S. Chekmenev, A. Farag, and E. Essock, 

―Thermal imaging of the super-ficial temporal 

artery: An arterial pulse recovery model,‖ in 

Proc. IEEE Conf. Comput. Vis. Patt. Recognit., 

Minneapolis, MN, Jun. 17–22, 2007, pp.1–6. 

[7] I. Pavlidis, J. Dowdall, N. Sun, C. Puri, J. Fei, 

and M. Garbey, ―Interacting with human 

physiology,‖ Comput. Vis. Imag. Understand, 

vol. 108, no. 1– 2, pp. 150–170, Oct./Nov. 2007. 

[8] J. Murthy, S. Faiz, J. Fei, I. Pavlidis, A. 

Abeulhagia, and R. Castriota, ―Remote infrared 

imaging: A novel non-contact method to monitor 

airflow during polysomnography,‖ in Proc. 

Chest Meet. Abstr., Chicago, IL, Oct. 20–25, 

2007, vol. 132, no. 4, p. 464. 

[9] P. Tsiamyrtzis, J. Dowdall, D. Shastri, I. 

Pavlidis, M. Frank, and P. Ekman, ―Imaging 

facial physiology for the detection of deceit,‖ Int. 

J. Comput. Vis., vol. 71, no. 2, pp. 197–214, Oct. 

2006. 

[10] B. Faser and J. Luettin, ―Automatic facial 

expression analysis: A survey,‖ Pattern 

Recognit., vol. 36, no. 1, pp. 259–275, 2003. 

[11] M. Bureau and F. Seri´es,` ―Comparison of two 

in laboratory titration methods to determine 

effective pressure levels in patients with 

obstructive sleep apnea,‖ Thorax, vol. 55, pp. 

741–745, 2000. 

[12] L. Matthews and T. Ishikawa, ―The template 

update problem,‖ IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 26, no. 6, pp. 810–815, Jun. 

2004. 

[13] A. Jepson, D. Fleet, and T. E.-Maraghi, ―Robust 

online appearance models for visual tracking,‖ 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, 

no. 10, pp. 415–422, Oct. 2003. 

[14] S. Zhou, R. Chellapa, and B. Moghaddam, 

―Visual tracking and recog-nition using 

appearance-adaptive models in particle filters,‖ 

IEEE Trans. Imag. Process., vol. 13, no. 11, pp. 

1491–1506, Nov. 2004. 

[15] J. Dowdall, I. Pavlidis, and P. Tsiamyrtzis, 

―Coalitional tracking,‖ Comput. Vis. Imag. 

Understand., vol. 106, no. 2–3, pp. 205–219, 

May 2007. 

[16] J. Dowdall, ―Tracking tissue in thermal infrared 

video,‖ Ph.D. dissertation, Dept. Comput. Sci., 

Univ. Houston, Houston, TX, 2006. 

[17] A. Levin, D. Lischinski, and Y. Weiss, ―A closed 

form solution to natural image matting,‖ IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, 

pp.228–242, Feb. 2008. 

[18] Y. Zhou, P. Tsiamyrtzis, and I. Pavlidis, ―Tissue 

tracking in thermo-physiological imagery 

through spatio-temporal smoothing,‖ in Medical 

Image Computing and Computer-Assisted 

Intervention, (Lecture Notes in Computer 

Science Series). vol. 5762, New York: Springer-

Verlag, 2009, pp.1092–1099. 

[19] Y. Li, J. Sun, C. Tang, and H. Shum, ―Lazy 

snapping,‖ ACM Spec. Interest Group Comput. 

Graph. Interactive Tech., vol. 23, no. 3, pp. 303–

308, Aug. 2004. 

[20] C. Rother, V. Kolmogorov, and A. Blake, 

―GrabCcut—interactive fore-ground extraction 

using iterated graph cuts,‖ ACM Spec. Interest 

Group Comput. Graph. Interactive Tech., vol. 

23, no. 3, pp. 309–314, Aug. 2004. 

[21] J. Shi and J. Malik, ―Normalized cuts and image 

segmentation,‖ IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 22, no. 8, pp. 888–905, Aug. 2000. 


