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Abstract- The survey of Fair Play and a novel system 

discovers and leverages traces left behind by fraudsters, 

to detect both malware and apps subjected to search 

rank fraud. Fair Play correlates review activities and 

uniquely combines detected review relations with 

linguistic and behavioral signals gleaned from Google 

Play app data in order to identify suspicious apps. 

Adversaries can have chances to launch attacks by 

gathering victim’s information continuously. This 

survey describe that an adversary can successfully infer 

a victim’s vertex identity and community identity by the 

knowledge of degrees within a time period. The survey 

also recommend to a new supervised clustering 

algorithm to find groups of data cluster. It directly 

incorporates the information of sample categories into 

the fraud clustering process. 

 

Index Terms- Graph Mining, Co-Review Mining, 

Clustering, Fair Play, Security, Clique detection 

 

I. INTRODUCTION 

 

The commercial success of Android app markets 

such as Google Play and the incentive model they 

offer to popular apps, make them appealing targets 

for fraudulent and malicious behaviors. Some 

fraudulent developers deceptively boost the search 

rank and popularity of their apps, while malicious 

developers use app markets as a launch pad for their 

malware.The motivation for such behaviors is 

impact: app popularity surges translate into financial 

benefits and expedited malware proliferation. 

Fraud and Malware Detection Approach is to detect 

fraud and malware, we propose and generate 28 

relational, behavioral and linguistic features that we 

use to train supervised learning algorithms. 

Formulate the notion of co-review graphs to model 

reviewing relations between users. Develop PCF, an 

efficient algorithm to identify temporally constrained, 

co-review pseudo-cliques—formed by reviewers with 

substantially overlapping co-review activities across 

short time windows. The main objectives of the 

FairPlay are  

1. To automatically detect malicious and fraudulent 

apps. 

2. To correlate review activities and uniquely 

combines detected review relations with 

linguistic and behavioral signals. 

3. To discover and leverage traces left behind by 

fraudsters. 

4. To detect both malware and apps subjected to 

search rank fraud. 

The achieve the main goal, the specific objectives 

required are 

 To create a The Co-Review Graph (CoReG) that 

identifies apps reviewed in a contiguous time 

window by groups of users with significantly 

overlapping review histories.  

 To propose review feedbacks approach which 

exploits feedback left by genuine reviewers? 

 To prepare clique from the Co-Review graph so 

that most related fraudulent users are found out. 

                               

                               II.RELATED WORKS 

 

iker burguera, urko zurutuza [1] proposed a new 

framework to obtain and analyze smart phone 

application activity. In collaboration with the 

Android user’s community, it will be capable of 

distinguishing between benign and malicious 

applications of the same name and version, detecting 

anomalous behavior of known applications. 

Furthermore, by deploying our plat- form on a 

number of test smart phones, we have created a proof 

of concept for this mechanism, as a means of 

analyzing emerging threats. We have indicated that 

monitoring system calls is a feasible way for 

detecting malware. This analysis technique has been 

widely used in the literature. According to the brief 

survey, we have seen that there’re many different 
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approaches to detect malware. We considered that 

monitoring system calls is one of the most accurate 

techniques to determine the behavior of Android 

applications, since they provide detailed low level 

information. We do realize that API call analysis, 

information flow tracking or network monitoring 

techniques can contribute to a deeper analysis of the 

malware, providing more useful information about 

malware behavior and more accurate results. On the 

other hand, more monitoring capability will place a 

higher demand on the amount of resources consumed 

in the device.  

Asaf shabtai, uri kanonov [2] presents Andromaly—a 

framework for detecting malware on Android mobile 

devices. The proposed framework realizes a Host-

based Malware Detection System that continuously 

monitors various features and events obtained from 

the mobile device and then applies Machine Learning 

anomaly detectors to classify the collected data as 

normal (benign) or abnormal (malicious). Since no 

malicious applications are yet available for Android, 

we developed four malicious applications, and 

evaluated Andromaly’s ability to detect new malware 

based on samples of known malware. We evaluated 

several combinations of anomaly detection 

algorithms, feature selection method and the number 

of top features in order to find the combination that 

yields the best performance in detecting new malware 

on Android. Empirical results suggest that the 

proposed framework is effective in detecting 

malware on mobile devices in general and on 

Android in particular. 

In this paper we presented a malware detection 

framework for Android which employs Machine 

Learning and tested various feature selection methods 

and classification/anomaly detection algorithms. The 

detection approach and algorithms are light-weight 

and run on the device itself. There is however also an 

option to perform the detection at a centralized 

location, or at least report the analysis results, derived 

locally on each device, to such a centralized location. 

This can be useful in detection of malware 

propagation patterns across a community of mobile 

devices. As stated by Rich Canning’s, 5 Google’s 

Android Security Leader, the Android Market place 

was chosen to be the place for reporting security 

issues by users. Users can mark applications as 

harmful, thereby triggering a security team to launch 

an investigation. Andromaly can be used for 

reporting suspicious behavior of applications to the 

Android Market.  

michael grace, yajin zhou [3] presents a proactive 

scheme to scalably and accurately sift through a large 

number of apps in existing Android markets to spot 

zero-day malware. Specifically, our scheme assesses 

the potential security risks from un- trusted apps by 

analyzing whether dangerous behaviors are exhibited 

by these apps (with two-order risk analysis). We have 

implemented a prototype of Risk Ranker and evaluate 

it using 118 , 318 apps from a variety of Android 

markets to demonstrate its effectiveness and 

accuracy: among the apps in the sample, our system 

successfully discovered 718 malware samples in 29 

families, including 322 zero-day specimens from 11 

distinct families.   

hao peng, chris gates [4] introduce the notion of risk 

scoring and risk ranking for Android apps, to 

improve risk communication for Android apps, and 

identify three desiderata for an effective risk scoring 

scheme. We propose to use probabilistic generative 

models for risk scoring schemes, and identify several 

such models, ranging from the simple Naive Bayes, 

to advanced hierarchical mixture models. 

Experimental results conducted using real-world 

datasets show that probabilistic general models 

significantly outperform existing approaches, and 

that Naive Bayes models give a promising risk 

scoring approach.  

We have discussed the importance of effectively 

communicating the risk of an application to users, 

and propose several methods to rate this risk. We test 

these methods on large real-world datasets to 

understand each method’s ability to assign risk to 

applications. One particular valuable method is the 

PNB model which has several ad- vantages. It is 

monotonic, and can provide feedback as to why risk 

is high for a specific app and how a developer could 

reduce that risk. It performs well in identifying most 

current malware apps as high risk, close to the 

sophisticated HMNB model. And it can differentiate 

between critical permissions and less-critical ones, 

making it more difficult to evade when compared 

with the BNB model 

suleiman y. Yerima, sakir sezer [5] investigate 

parallel classification approach to Android malware 

detection using inherently diverse machine learning 

algorithms. The proposed approach utilized a wide 

range of features which included API calls related, 
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commands related and permission features. The 

recent increase in Android malware and their 

growing ability for adept detection avoidance of 

existing signature - based approaches definitely calls 

for novel alternatives. The parallel classification 

approach proposed in this paper is a viable scheme 

that provides a complementary tool that not only 

potentially improves Android malware detection but 

al so allows the strengths of diverse classifiers to be 

leveraged. For example, the rule based classifiers can 

provide human - interpretable intermediate output 

that can be useful for driving further analysis stages. 

Furthermore, the proposed approach is  ideal  from 

performance point of view since it  is cost effective  

in classifying a new application  because: 1) static 

app features  are employed  and 2)  the selected 

constituent classification  models have low 

computational requirements during  classification 

decision . 

justin sahs, latifur khan [6] presented a novel 

machine learning-based malware detection system for 

the Android operating system. Our system has shown 

promising results in that it has a very low false 

negative rate, but also much room for improvement 

in its high false positive rate. There are a number of 

possible improvements that could be investigated. A. 

Features: Our system is limited to just the 

permissions (built-in and non-standard), and CFGs of 

the input applications. There are many other potential 

sources of information-rich features. For instance, 

there are other metadata entries in the manifest file 

that contains the requested permissions. There are 

also many potential sources of features in the 

program code itself, such as constant declarations and 

method names. Additionally, the current features 

could be improved. In particular, the way we extract 

CFGs abandons much of the information originally 

present in the code: we label nodes in the CFG based 

only on the last instruction of the block it rep- 

resents. We could instead label based on all of the 

instructions in the block. We also only have a small 

set of labels, which could be expanded to include 

more detailed information about the kinds of 

instructions present (e.g. arithmetic operations, 

memory access, etc.). Such distinctions would lead to 

a much more robust label set, which would possibly 

increase the power of the graph kernel, since it is 

based on the graph labels.  

borja sanz, igor santos[7] describes, permissions are 

the most recognizable security feature in Android. 

User must accept them in order to install the 

application. In this paper we evaluate the capacity of 

permissions to detect malware using machine-

learning techniques. In order to validate our method, 

we collected 239 malware samples of Android 

applications. Then, we extracted the aforementioned 

features for each application and trained the models, 

evaluating each configuration using the Area under 

ROC Curve (AUC). We obtained a 0.92 of AUC 

using the Random Forest classifier. Nevertheless, 

there are several considerations regarding the 

viability of our approach. Forensic experts are 

developing reverse engineering tools over Android 

applications, from which researchers could retrieve 

new features to enhance the data used to train the 

models. Furthermore, despite the high detection rate, 

the obtained result has an high false positive rate. 

Consequently, this method can be used as a first step 

before other more extensive analysis, such as a 

dynamic analysis.  

Future work of this Android malware detection tool 

is oriented in two main directions. First, there are 

other features from the applications that could be 

used to improve the detection ratio that do not require 

executing the sample. Forensics tools for Android 

applications should be developed in order to obtain 

new features. Second, dynamic analysis provides 

additional information that could improve malware 

detection systems. Unfortunately, smart phones 

resources are limited and this kind of analysis usually 

consumes resources that these devices don’t have.  

junting ye, leman akoglu [8] proposed an 

unsupervised and scalable approach for spotting 

spammer groups in online review sites solely based 

on their network footprints. Our method consists of 

two main components: (1) NFS; a new measure that 

quantifies the statistical distortions of well-studied 

properties in the review network, and (2) Group- 

Strainer; a hierarchical clustering method that chips 

off colluding groups from a sub network induced on 

target products with high NFS values. We validated 

the effectiveness of our method on both synthetic and 

real-world datasets, where we detected various 

groups of users with suspicious colluding behavior. 

     

III. METHODOLOGY 
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Commercial success of Android app markets like 

Google Play] and the incentive model they offer to 

popularize apps, make them appealing targets for 

malicious and fraudulent behaviors. Some fraudulent 

developers deceptively boost search rank and 

popularity of their apps (e.g., through fake reviews 

and bogus installation counts) while malicious 

developers use app markets as a launch pad for their 

malware. The motivation for such behaviors is 

impact: app popularity surges translate into financial 

benefits and expedited malware proliferation. The 

main problem is to detect malicious and fraudulent 

apps. Hence if a system that leverages the above 

observations to efficiently detect Google Play fraud 

and malware, then it will be helpful. So the project 

introduces FairPlay, a system to automatically detect 

malicious and fraudulent apps. 

A) Overview 

FairPlay organizes the feedbacks given by users and 

preprocesses the reviews. Then the CoReview Graph 

is being constructed. This CR Graph exploits the 

observation that fraudsters who control many 

accounts will re-use them across multiple jobs. Its 

goal is then to detect sub-sets of an app’s reviewers 

that have performed significant common review 

activities in the past. In the following, we describe 

the co-review graph concept, formally present the 

weighted maximal clique enumeration problem, then 

introduce an efficient heuristic that leverages natural 

limitations in the behaviors of fraudsters.  

 
Nodes are users and edge weights denote the number 

of apps reviewed in common by the end users. 

Review timestamps have a 1-day granularity. (a) The 

entire co-review graph, detected as pseudo-clique by 

PCF when u is 6. When u is 7, PCF detects the sub 

graphs of (b) the first two days and (c) the last two 

days. When u=8, PCF detects only the clique formed 

by the first day reviews (the red nodes). 

Fig 3.2 Architecture Diagram 

Here coarse cluster is the generated main graph. Fine 

cluster is the graph with least connected nodes 

removed. If a node with all the edge weights below a 

given threshold, then the edges and that node are 

removed.   

The following modules are present in the project. 

 Tweets Collection for reviews. 

 Co-Review Graph Construction. 

 Finding Cliques to get fraud users. 

 Remove nodes with edge weights below 

threshold so normal users are treated as non-

fraud users. 

 

Tweets Collection For Reviews 

In this module, 

 Using twitter package and search twitter 

function, the tweets are downloaded and 

preprocessed. 

 Stop word removal, punctuation removal, 

unicode character removal are carried out. 

 Key Terms are filtered such that first 50 more 

occurrence words are taken. 

 Then unique users in the tweet are also found 

out. 

 

Co-Review Graph Construction 

In this phase, 

 From unique users in the tweet are found out. 
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 Same Key word present in two topics of two 

different users are found, then two nodes and one 

edge is formed in the graph. 

 Thus the full graph is constructed. During edge 

addition, co-occurrence count is also found out 

and set as edge weight. 

 

Finding Cliques To Get Fraud Users 

In this phase, 

 From the full graph constructed, cliques are 

found out with minimum 5 nodes in them. 

 These cliques denote the users who are densely 

connected. 

 These users are treated as fraud users. 

 

Remove nodes with edge weights below threshold so 

normal users are treated as non-fraud users 

In this phase, 

 One nodes, all edges are taken. If all the edge 

weights are below the given threshold values, it 

means the user is giving rating less times only.  

 The user is treated as normal user. 

 

IV. EXPERIMENTAL RESULTS 

 

The following Table 4.1 describes experimental 

result for Clique and Coarse Cluster analysis. The 

table contains finding number of Google App usage 

for attacks in malware social environments are 

shown.  

Table 6.1 Fig 6.1 Clique and Coarse Cluster 

Performance Analysis 

S.NO Clique Techniques  Coarse Cluster 

1 0.16 0.19 

2 0.19 0.22 

3 0.24 0.29 

4 0.31 0.34 

5 0.38 0.43 

6 0.43 0.49 

7 0.50 0.54 

8 0.59 0.62 

9 0.67 0.69 

10 0.72 0.74 

 

The following Fig 6.1 describes experimental result 

for Clique and Coarse Cluster analysis. The figure 

contains finding number of Google App usage for 

attacks in social environments are shown.  

Fig 6.1 Clique and Coarse Cluster Performance 

Analysis 

The following Table 6.2 describes experimental 

result for Clique and Coarse Cluster error rate 

analysis. The table contains Number application 

review and average percentages for CT and CC using 

malware detection are shown. 

Table 6.2 Reduced Error Rate for Clique Detection 

and Coarse Cluster 

Mobile Review  Clique 

Techniques (%) 

Coarse Cluster 

(%) 

10 72.54 78.62 

20 76.13 78.11 

30 82.42 83.13 

40 86.66 84.67 

50 88.13 89.78 

60 80.44 82.66 

70 78.33 80.21 

80 87.22 89.76 

90 79.22 80.65 

100 91.22 92..62 

The following Fig 6.2 describes experimental result 

for Clique and Coarse Cluster error rate analysis. The 

figure contains Number application review and 

average percentages for CT and CC using malware 

detection are shown. 
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Fig 6.3 Reduced Error Rate for Clique and Coarse 

Cluster 

 

V.RESULTS 

 

 The statistical analysis of Malware app injection 

attacks data if prepared can be used for research 

development. 

 N number of review can be found out easily 

where the injections are easy found out. 

 The multimedia app attacks can also be detected 

 The efficiency of the paper is further improved 

by improving coding efficiency 

 In future, the time taken to complete the task is 

minimized 

 Multitasking can also performed 

 

VI CONCLUSION 

 

Some fraudulent developers deceptively boost the 

search rank and popularity of their apps (e.g., through 

fake reviews and bogus installation counts), while 

malicious developers use app markets as a launch pad 

for their malware. The motivation for such behaviors 

is impact: app popularity surges translate into 

financial benefits and expedited malware 

proliferation. This survey seeks to identify both 

malware and search rank fraud subjects in Google 

Play. This combination is not arbitrary: we posit that 

malicious developers resort to search rank fraud to 

boost the impact of their malware. Unlike existing 

solutions, this project builds this work on the 

observation that fraudulent and malicious behaviors 

leave behind telltale signs on app markets. The 

survey has introduced FairPlay, a system to detect 

both fraudulent and malware Google Play apps. The 

experiments on the twitter posts, have shown that a 

high percentage of fraud users are found. In addition, 

it recommendation for FairPlay’s ability to discover 

non-fraud users also. 

In the future, how to utilize inferred information and 

extend the framework for efficient and effective 

network monitoring and application design.  

The new system become useful if the below 

enhancements are made in future. At present, number 

of posts/forum, average sentiment values/forums, 

positive % of posts/forum and negative % of 

posts/forums are taken as feature spaces for K-Means 

clustering. In future, neutral replies, multiple-

languages based replies can also be taken as 

dimensions for clustering purpose. In addition, 

currently forums are taken for hot spot detection. 

Live Text streams such as chatting messages can be 

tracked and classification can be adopted. The new 

system is designed such that those enhancements can 

be integrated with current modules easily with less 

integration work and it becomes useful if the above 

enhancements are made in future.  
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