
© May 2019 | IJIRT | Volume 5 Issue 12 | ISSN: 2349-6002

IJIRT 148112 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 413

Search Rank Fraud and Malware Detection in Google

Play Application

Nisha.R
1
, Dr.Subha.R

2
, Balamurugan.V

3

1,2,3
Department of CSE, Sri Eshwar College of Engineering, Coimbatore, India

Abstract- The survey of Fair Play and a novel system

discovers and leverages traces left behind by fraudsters,

to detect both malware and apps subjected to search

rank fraud. Fair Play correlates review activities and

uniquely combines detected review relations with

linguistic and behavioral signals gleaned from Google

Play app data in order to identify suspicious apps.

Adversaries can have chances to launch attacks by

gathering victim’s information continuously. This

survey describe that an adversary can successfully infer

a victim’s vertex identity and community identity by the

knowledge of degrees within a time period. The survey

also recommend to a new supervised clustering

algorithm to find groups of data cluster. It directly

incorporates the information of sample categories into

the fraud clustering process.

Index Terms- Graph Mining, Co-Review Mining,

Clustering, Fair Play, Security, Clique detection

I. INTRODUCTION

The commercial success of Android app markets

such as Google Play and the incentive model they

offer to popular apps, make them appealing targets

for fraudulent and malicious behaviors. Some

fraudulent developers deceptively boost the search

rank and popularity of their apps, while malicious

developers use app markets as a launch pad for their

malware.The motivation for such behaviors is

impact: app popularity surges translate into financial

benefits and expedited malware proliferation.

Fraud and Malware Detection Approach is to detect

fraud and malware, we propose and generate 28

relational, behavioral and linguistic features that we

use to train supervised learning algorithms.

Formulate the notion of co-review graphs to model

reviewing relations between users. Develop PCF, an

efficient algorithm to identify temporally constrained,

co-review pseudo-cliques—formed by reviewers with

substantially overlapping co-review activities across

short time windows. The main objectives of the

FairPlay are

1. To automatically detect malicious and fraudulent

apps.

2. To correlate review activities and uniquely

combines detected review relations with

linguistic and behavioral signals.

3. To discover and leverage traces left behind by

fraudsters.

4. To detect both malware and apps subjected to

search rank fraud.

The achieve the main goal, the specific objectives

required are

 To create a The Co-Review Graph (CoReG) that

identifies apps reviewed in a contiguous time

window by groups of users with significantly

overlapping review histories.

 To propose review feedbacks approach which

exploits feedback left by genuine reviewers?

 To prepare clique from the Co-Review graph so

that most related fraudulent users are found out.

 II.RELATED WORKS

iker burguera, urko zurutuza [1] proposed a new

framework to obtain and analyze smart phone

application activity. In collaboration with the

Android user’s community, it will be capable of

distinguishing between benign and malicious

applications of the same name and version, detecting

anomalous behavior of known applications.

Furthermore, by deploying our plat- form on a

number of test smart phones, we have created a proof

of concept for this mechanism, as a means of

analyzing emerging threats. We have indicated that

monitoring system calls is a feasible way for

detecting malware. This analysis technique has been

widely used in the literature. According to the brief

survey, we have seen that there’re many different

© May 2019 | IJIRT | Volume 5 Issue 12 | ISSN: 2349-6002

IJIRT 148112 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 414

approaches to detect malware. We considered that

monitoring system calls is one of the most accurate

techniques to determine the behavior of Android

applications, since they provide detailed low level

information. We do realize that API call analysis,

information flow tracking or network monitoring

techniques can contribute to a deeper analysis of the

malware, providing more useful information about

malware behavior and more accurate results. On the

other hand, more monitoring capability will place a

higher demand on the amount of resources consumed

in the device.

Asaf shabtai, uri kanonov [2] presents Andromaly—a

framework for detecting malware on Android mobile

devices. The proposed framework realizes a Host-

based Malware Detection System that continuously

monitors various features and events obtained from

the mobile device and then applies Machine Learning

anomaly detectors to classify the collected data as

normal (benign) or abnormal (malicious). Since no

malicious applications are yet available for Android,

we developed four malicious applications, and

evaluated Andromaly’s ability to detect new malware

based on samples of known malware. We evaluated

several combinations of anomaly detection

algorithms, feature selection method and the number

of top features in order to find the combination that

yields the best performance in detecting new malware

on Android. Empirical results suggest that the

proposed framework is effective in detecting

malware on mobile devices in general and on

Android in particular.

In this paper we presented a malware detection

framework for Android which employs Machine

Learning and tested various feature selection methods

and classification/anomaly detection algorithms. The

detection approach and algorithms are light-weight

and run on the device itself. There is however also an

option to perform the detection at a centralized

location, or at least report the analysis results, derived

locally on each device, to such a centralized location.

This can be useful in detection of malware

propagation patterns across a community of mobile

devices. As stated by Rich Canning’s, 5 Google’s

Android Security Leader, the Android Market place

was chosen to be the place for reporting security

issues by users. Users can mark applications as

harmful, thereby triggering a security team to launch

an investigation. Andromaly can be used for

reporting suspicious behavior of applications to the

Android Market.

michael grace, yajin zhou [3] presents a proactive

scheme to scalably and accurately sift through a large

number of apps in existing Android markets to spot

zero-day malware. Specifically, our scheme assesses

the potential security risks from un- trusted apps by

analyzing whether dangerous behaviors are exhibited

by these apps (with two-order risk analysis). We have

implemented a prototype of Risk Ranker and evaluate

it using 118 , 318 apps from a variety of Android

markets to demonstrate its effectiveness and

accuracy: among the apps in the sample, our system

successfully discovered 718 malware samples in 29

families, including 322 zero-day specimens from 11

distinct families.

hao peng, chris gates [4] introduce the notion of risk

scoring and risk ranking for Android apps, to

improve risk communication for Android apps, and

identify three desiderata for an effective risk scoring

scheme. We propose to use probabilistic generative

models for risk scoring schemes, and identify several

such models, ranging from the simple Naive Bayes,

to advanced hierarchical mixture models.

Experimental results conducted using real-world

datasets show that probabilistic general models

significantly outperform existing approaches, and

that Naive Bayes models give a promising risk

scoring approach.

We have discussed the importance of effectively

communicating the risk of an application to users,

and propose several methods to rate this risk. We test

these methods on large real-world datasets to

understand each method’s ability to assign risk to

applications. One particular valuable method is the

PNB model which has several ad- vantages. It is

monotonic, and can provide feedback as to why risk

is high for a specific app and how a developer could

reduce that risk. It performs well in identifying most

current malware apps as high risk, close to the

sophisticated HMNB model. And it can differentiate

between critical permissions and less-critical ones,

making it more difficult to evade when compared

with the BNB model

suleiman y. Yerima, sakir sezer [5] investigate

parallel classification approach to Android malware

detection using inherently diverse machine learning

algorithms. The proposed approach utilized a wide

range of features which included API calls related,

© May 2019 | IJIRT | Volume 5 Issue 12 | ISSN: 2349-6002

IJIRT 148112 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 415

commands related and permission features. The

recent increase in Android malware and their

growing ability for adept detection avoidance of

existing signature - based approaches definitely calls

for novel alternatives. The parallel classification

approach proposed in this paper is a viable scheme

that provides a complementary tool that not only

potentially improves Android malware detection but

al so allows the strengths of diverse classifiers to be

leveraged. For example, the rule based classifiers can

provide human - interpretable intermediate output

that can be useful for driving further analysis stages.

Furthermore, the proposed approach is ideal from

performance point of view since it is cost effective

in classifying a new application because: 1) static

app features are employed and 2) the selected

constituent classification models have low

computational requirements during classification

decision .

justin sahs, latifur khan [6] presented a novel

machine learning-based malware detection system for

the Android operating system. Our system has shown

promising results in that it has a very low false

negative rate, but also much room for improvement

in its high false positive rate. There are a number of

possible improvements that could be investigated. A.

Features: Our system is limited to just the

permissions (built-in and non-standard), and CFGs of

the input applications. There are many other potential

sources of information-rich features. For instance,

there are other metadata entries in the manifest file

that contains the requested permissions. There are

also many potential sources of features in the

program code itself, such as constant declarations and

method names. Additionally, the current features

could be improved. In particular, the way we extract

CFGs abandons much of the information originally

present in the code: we label nodes in the CFG based

only on the last instruction of the block it rep-

resents. We could instead label based on all of the

instructions in the block. We also only have a small

set of labels, which could be expanded to include

more detailed information about the kinds of

instructions present (e.g. arithmetic operations,

memory access, etc.). Such distinctions would lead to

a much more robust label set, which would possibly

increase the power of the graph kernel, since it is

based on the graph labels.

borja sanz, igor santos[7] describes, permissions are

the most recognizable security feature in Android.

User must accept them in order to install the

application. In this paper we evaluate the capacity of

permissions to detect malware using machine-

learning techniques. In order to validate our method,

we collected 239 malware samples of Android

applications. Then, we extracted the aforementioned

features for each application and trained the models,

evaluating each configuration using the Area under

ROC Curve (AUC). We obtained a 0.92 of AUC

using the Random Forest classifier. Nevertheless,

there are several considerations regarding the

viability of our approach. Forensic experts are

developing reverse engineering tools over Android

applications, from which researchers could retrieve

new features to enhance the data used to train the

models. Furthermore, despite the high detection rate,

the obtained result has an high false positive rate.

Consequently, this method can be used as a first step

before other more extensive analysis, such as a

dynamic analysis.

Future work of this Android malware detection tool

is oriented in two main directions. First, there are

other features from the applications that could be

used to improve the detection ratio that do not require

executing the sample. Forensics tools for Android

applications should be developed in order to obtain

new features. Second, dynamic analysis provides

additional information that could improve malware

detection systems. Unfortunately, smart phones

resources are limited and this kind of analysis usually

consumes resources that these devices don’t have.

junting ye, leman akoglu [8] proposed an

unsupervised and scalable approach for spotting

spammer groups in online review sites solely based

on their network footprints. Our method consists of

two main components: (1) NFS; a new measure that

quantifies the statistical distortions of well-studied

properties in the review network, and (2) Group-

Strainer; a hierarchical clustering method that chips

off colluding groups from a sub network induced on

target products with high NFS values. We validated

the effectiveness of our method on both synthetic and

real-world datasets, where we detected various

groups of users with suspicious colluding behavior.

III. METHODOLOGY

© May 2019 | IJIRT | Volume 5 Issue 12 | ISSN: 2349-6002

IJIRT 148112 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 416

Commercial success of Android app markets like

Google Play] and the incentive model they offer to

popularize apps, make them appealing targets for

malicious and fraudulent behaviors. Some fraudulent

developers deceptively boost search rank and

popularity of their apps (e.g., through fake reviews

and bogus installation counts) while malicious

developers use app markets as a launch pad for their

malware. The motivation for such behaviors is

impact: app popularity surges translate into financial

benefits and expedited malware proliferation. The

main problem is to detect malicious and fraudulent

apps. Hence if a system that leverages the above

observations to efficiently detect Google Play fraud

and malware, then it will be helpful. So the project

introduces FairPlay, a system to automatically detect

malicious and fraudulent apps.

A) Overview

FairPlay organizes the feedbacks given by users and

preprocesses the reviews. Then the CoReview Graph

is being constructed. This CR Graph exploits the

observation that fraudsters who control many

accounts will re-use them across multiple jobs. Its

goal is then to detect sub-sets of an app’s reviewers

that have performed significant common review

activities in the past. In the following, we describe

the co-review graph concept, formally present the

weighted maximal clique enumeration problem, then

introduce an efficient heuristic that leverages natural

limitations in the behaviors of fraudsters.

Nodes are users and edge weights denote the number

of apps reviewed in common by the end users.

Review timestamps have a 1-day granularity. (a) The

entire co-review graph, detected as pseudo-clique by

PCF when u is 6. When u is 7, PCF detects the sub

graphs of (b) the first two days and (c) the last two

days. When u=8, PCF detects only the clique formed

by the first day reviews (the red nodes).

Fig 3.2 Architecture Diagram

Here coarse cluster is the generated main graph. Fine

cluster is the graph with least connected nodes

removed. If a node with all the edge weights below a

given threshold, then the edges and that node are

removed.

The following modules are present in the project.

 Tweets Collection for reviews.

 Co-Review Graph Construction.

 Finding Cliques to get fraud users.

 Remove nodes with edge weights below

threshold so normal users are treated as non-

fraud users.

Tweets Collection For Reviews

In this module,

 Using twitter package and search twitter

function, the tweets are downloaded and

preprocessed.

 Stop word removal, punctuation removal,

unicode character removal are carried out.

 Key Terms are filtered such that first 50 more

occurrence words are taken.

 Then unique users in the tweet are also found

out.

Co-Review Graph Construction

In this phase,

 From unique users in the tweet are found out.

© May 2019 | IJIRT | Volume 5 Issue 12 | ISSN: 2349-6002

IJIRT 148112 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 417

 Same Key word present in two topics of two

different users are found, then two nodes and one

edge is formed in the graph.

 Thus the full graph is constructed. During edge

addition, co-occurrence count is also found out

and set as edge weight.

Finding Cliques To Get Fraud Users

In this phase,

 From the full graph constructed, cliques are

found out with minimum 5 nodes in them.

 These cliques denote the users who are densely

connected.

 These users are treated as fraud users.

Remove nodes with edge weights below threshold so

normal users are treated as non-fraud users

In this phase,

 One nodes, all edges are taken. If all the edge

weights are below the given threshold values, it

means the user is giving rating less times only.

 The user is treated as normal user.

IV. EXPERIMENTAL RESULTS

The following Table 4.1 describes experimental

result for Clique and Coarse Cluster analysis. The

table contains finding number of Google App usage

for attacks in malware social environments are

shown.

Table 6.1 Fig 6.1 Clique and Coarse Cluster

Performance Analysis

S.NO Clique Techniques Coarse Cluster

1 0.16 0.19

2 0.19 0.22

3 0.24 0.29

4 0.31 0.34

5 0.38 0.43

6 0.43 0.49

7 0.50 0.54

8 0.59 0.62

9 0.67 0.69

10 0.72 0.74

The following Fig 6.1 describes experimental result

for Clique and Coarse Cluster analysis. The figure

contains finding number of Google App usage for

attacks in social environments are shown.

Fig 6.1 Clique and Coarse Cluster Performance

Analysis

The following Table 6.2 describes experimental

result for Clique and Coarse Cluster error rate

analysis. The table contains Number application

review and average percentages for CT and CC using

malware detection are shown.

Table 6.2 Reduced Error Rate for Clique Detection

and Coarse Cluster

Mobile Review Clique

Techniques (%)

Coarse Cluster

(%)

10 72.54 78.62

20 76.13 78.11

30 82.42 83.13

40 86.66 84.67

50 88.13 89.78

60 80.44 82.66

70 78.33 80.21

80 87.22 89.76

90 79.22 80.65

100 91.22 92..62

The following Fig 6.2 describes experimental result

for Clique and Coarse Cluster error rate analysis. The

figure contains Number application review and

average percentages for CT and CC using malware

detection are shown.

© May 2019 | IJIRT | Volume 5 Issue 12 | ISSN: 2349-6002

IJIRT 148112 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 418

Fig 6.3 Reduced Error Rate for Clique and Coarse

Cluster

V.RESULTS

 The statistical analysis of Malware app injection

attacks data if prepared can be used for research

development.

 N number of review can be found out easily

where the injections are easy found out.

 The multimedia app attacks can also be detected

 The efficiency of the paper is further improved

by improving coding efficiency

 In future, the time taken to complete the task is

minimized

 Multitasking can also performed

VI CONCLUSION

Some fraudulent developers deceptively boost the

search rank and popularity of their apps (e.g., through

fake reviews and bogus installation counts), while

malicious developers use app markets as a launch pad

for their malware. The motivation for such behaviors

is impact: app popularity surges translate into

financial benefits and expedited malware

proliferation. This survey seeks to identify both

malware and search rank fraud subjects in Google

Play. This combination is not arbitrary: we posit that

malicious developers resort to search rank fraud to

boost the impact of their malware. Unlike existing

solutions, this project builds this work on the

observation that fraudulent and malicious behaviors

leave behind telltale signs on app markets. The

survey has introduced FairPlay, a system to detect

both fraudulent and malware Google Play apps. The

experiments on the twitter posts, have shown that a

high percentage of fraud users are found. In addition,

it recommendation for FairPlay’s ability to discover

non-fraud users also.

In the future, how to utilize inferred information and

extend the framework for efficient and effective

network monitoring and application design.

The new system become useful if the below

enhancements are made in future. At present, number

of posts/forum, average sentiment values/forums,

positive % of posts/forum and negative % of

posts/forums are taken as feature spaces for K-Means

clustering. In future, neutral replies, multiple-

languages based replies can also be taken as

dimensions for clustering purpose. In addition,

currently forums are taken for hot spot detection.

Live Text streams such as chatting messages can be

tracked and classification can be adopted. The new

system is designed such that those enhancements can

be integrated with current modules easily with less

integration work and it becomes useful if the above

enhancements are made in future.

REFERENCES

[1] Mahmudur Rahman, Mizanur Rahman, Bogdan

Carbunar, and Duen Horng Chau, ―Search Rank

Fraud and Malware Detection in Google Play‖,

IEEE Transactions On Knowledge And Data

Engineering, Vol. 29, NO. 6, June 2017.

[2] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani ,

―Crowdroid: Behavior-based Malware detection

system for Android,‖ in Proc. ACM SPSM,

2011, pp. 15–26.

[3] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer,

and Y. Weiss, ―Andromaly: A behavioral

malware detection framework for

Androiddevices,‖Intell.Inform.Syst.,vol.38,no.1,

pp.161–190,2012.

[4] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X.

Jiang, ―RiskRanker: Scalable and accurate zero-

day Android malware detection,‖ in Proc. ACM

MobiSys, 2012, pp. 281–294.

[5] H. Peng, et al., ―Using probabilistic generative

models for ranking risks of Android Apps,‖ in

Proc. ACM Conf. Comput. Commun. Secur.,

2012, pp. 241–252.

[6] S. Yerima, S. Sezer, and I. Muttik, ―Android

Malware detection using parallel machine

learning classifiers,‖ in Proc. NGMAST, Sep.

2014, pp. 37–42.

[7] J. Sahs and L. Khan, ―A machine learning

approach to Android malware detection,‖ in

Proc. Eur. Intell. Secur. Inf. Conf., 2012, pp.

141–147.

[8] B. Sanz, I. Santos, C. Laorden, X. Ugarte-

Pedrero, P. G. Bringas, and G. Alvarez, ―Puma:

Permission usage to detect malware in android,‖

in Proc. Int. Joint Conf. CISIS12-ICEUTE’ 12-

SOCO’ Special Sessions, 2013, pp. 289–298.

© May 2019 | IJIRT | Volume 5 Issue 12 | ISSN: 2349-6002

IJIRT 148112 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 419

[9] J. Ye and L. Akoglu, ―Discovering opinion

spammer groups by network footprints,‖ in

Machine Learning and Knowledge Discovery in

Databases. Berlin, Germany: Springer, 2015, pp.

267–282.

[10] S. Brin and L. Page, ―The Anatomy of a Large-

Scale Hypertextual Web Search Engine.‖

Computer Networks and ISDN Systems, vol. 30,

nos. 1-7, pp. 107-117, 1998.

[11] R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L.

Zhang, ―iRobot: An Intelligent Crawler for Web

Forums,‖ Proc. 17th Int’l Conf. World Wide

Web, pp. 447-456, 2008.

[12] A. Dasgupta, R. Kumar, and A. Sasturkar, ―De-

Duping URLs via Rewrite Rules,‖ Proc. 14th

ACM SIGKDD Int’l Conf. Knowledge

Discovery and Data Mining, pp. 186-194, 2008.

[13] C. Gao, L. Wang, C.-Y. Lin, and Y.-I. Song,

―Finding Question-Answer Pairs from Online

Forums,‖ Proc. 31st Ann. Int’l ACM SIGIR

Conf. Research and Development in Information

Retrieval, pp. 467-474, 2008.

[14] H.S. Koppula, K.P. Leela, A. Agarwal, K.P.

Chitrapura, S. Garg, and A. Sasturkar, ―Learning

URL Patterns for Webpage De-Duplication,‖

Proc. Third ACM Conf. Web Search and Data

Mining, pp. 381-390, 2010.

[15] L. Zhang, B. Liu, S.H. Lim, and E. O’Brien-

Strain, ―Extracting and Ranking Product

Features in Opinion Documents,‖ Proc. 23rd

Int’l Conf. Computational Linguistics, pp. 1462-

1470, 2010.

[16] M.L.A. Vidal, A.S. Silva, E.S. Moura, and

J.M.B. Cavalcanti, ―Structure-Driven Crawler

Generation by Example,‖ Proc. 29thAnn. Int’l

ACM SIGIR Conf. Research and Development

in Information Retrieval, pp. 292-299, 2006.

[17] Y. Wang, J.-M. Yang, W. Lai, R. Cai, L. Zhang,

and W.-Y. Ma, ―Exploring Traversal Strategy for

Web Forum Crawling,‖ Proc. 31st Ann. Int’l

ACM SIGIR Conf. Research and Development

in Information Retrieval, pp. 459-466, 2008.

[18] J.-M. Yang, R. Cai, Y. Wang, J. Zhu, L. Zhang,

and W.-Y. Ma, ―Incorporating Site-Level

Knowledge to Extract Structured Data from Web

Forums,‖ Proc. 18th Int’l Conf. World Wide

Web, pp. 181-190, 2009.

[19] Y. Zhai and B. Liu, ―Structured Data Extraction

from the Web based on Partial Tree Alignment,‖

IEEE Trans. Knowledge Data Eng., vol. 18, no.

12, pp. 1614-1628, Dec. 2006.

