Seismic Analysis of Over Head INTZE Water Tank Subjected to Sloshing Effect

Dr. K Naresh

Professor and HOD, Dept. of Civil Engineering Sri Krishna Institute of Technology

Abstract- Water supply is a life line facility that must remain functional in natural disaster. These structures have large mass concentrated at the top of slender supporting structure hence these structure are especially vulnerable to horizontal forces due to earthquakes. The Intze water tank were collapsed or heavily damaged during the earthquakes because of unsuitable design of supporting system or wrong selection of supporting system and underestimated demand or overestimated strength. So, it is very important to select proper supporting system and also need to study the response of Intze water tank subjected to seismic forces in different zones and to find out the design parameters for seismic analysis. It is also necessary to consider the sloshing effect on container roof slab. The effect of hydrodynamic pressure and pressure due to wall inertia & effect of vertical ground acceleration in the seismic analysis must be considered in the seismic analysis of Intze water tank.

Index terms- Intze Water Tank, Sloshing effect, SAP 2000

I. INTRODUCTION

All over the world, most of the failures of large water tanks after/during earthquakes are suspected to have resulted from dynamic buckling caused by overturning moments of seismically induced liquid inertia and surface slosh waves and also because of unsuitable design of supporting system or wrong selection of supporting system and underestimated demand or overestimated strength.

A water tower built in accordance with the Intze Principle has a brick shaft on which the water tank sits. The base of the tank is fixed with a ring anchor (Ringanker) made of iron or steel, so that only vertical, not horizontal, forces are transmitted to the tower. Due to the lack of horizontal forces the tower shaft does not need to be quite as solidly built. This type of design was used in Germany between 1885 and 1905 During lateral base excitation seismic ground acceleration reasons hydrodynamic stress at the tank wall which depends at the geometry of tank, top of liquid, homes of liquid and fluid-tank interplay. Proper estimation of hydrodynamic strain calls for a rigorous fluid-shape interaction evaluation. In the mechanical analogue of tank-liquid system, the liquid is split in two components as, impulsive liquid and convective liquid.

Column-Beam type staging is always considered better than RC shaft type staging because of more absorbing capacity of seismic forces and huge redundancy compared to shaft type staging. Column-Beam type staging have more flexural members like beams and columns to absorb heavy lateral loads during seismic action. The failure pattern in such staging to be known earliest, if damage occurs in staging pattern then the forces distributed to other part of the structure, also to be detail as per Indian standard code to resist lateral forces and able to sustain deformation.

II. LITERATURE REVIEW

George Housner et. al., [1963][1]: In 1960 Chilean faces earthquakes, some elevated water tank stand without damage and some tank are damaged heavily. An analysis of such elevated tanks is taken into account movement of liquid relative to tank and movement of tank relative to tank. The simplified dynamic analysis is carried out with simplified expression and to know the exact behaviors of elevated water tank under dynamic loadings.

For structural engineers dynamic analysis of such tanks is very important and such analysis is carried out for empty tank and full tank condition with sloshing effects. For tank with full liquid considered as one-mass structure and the tank with partially filled with liquid considered as two mass structures, behavior of such structure under seismic and sloshing effect is completely different. So therefore proper understanding of dynamic behavior of tank is very important.

Sarvesh K Jain et. al., [1993][2]: Elevated water tank to be analyzed for two degree and single degree of freedom system because the full tank behaves like single mass and partially filled tank behaves like two mass structure. For seismic stability of the water tank the structure to be analyzed for (a) empty condition

(b) full tank condition and (c) partially filled tank condition in partially filled tank due to sloshing of liquid the impulsive and convective hydrodynamic pressure to be applied to tank side walls so the sloshing effect on elevated water tank to considered for optimum design of it.

Durgesh C Rai et. al., [2002] [3]: Circular elevated water tank are more vulnerable to seismic effect. During bhuj earthquake the circular type water tank damaged more due to seismic effects. It is evident from the current Bhuj study they considered staging as building structure but actual seismic behavior is completely different for tank.

So the selection of staging type is very important in analysis, the structure with weak staging results in failure under seismic loading and staging to be detailed according to IS13920 detailing under such circumstances it can withstand.

Sudhir K Jain and O.R.Jaiswal et. al., [2005][4]: By referring international codes Sudhir and Jaiswal proposed some modification in IS 1893-(Part-II),the modification are as follows.

The design horizontal seismic co efficient, response reduction and importance factor to be referred according IS 1893 which is given in table while designing elevated water tank.

The impulsive and convective hydrodynamic pressure to be calculated according to code and spring mass modal to be made for single and two mass modal to know the exact dynamic behavior on tank.

The analysis results to evaluate for critical case with taking the effect of sloshing and permitted board to be given grounded on wave altitude due to sloshing. If permitted board not able to provide then the top dome to be designed for uplift pressure due to sloshing effects.

Elevated water tank is analyzed for two degree and single degree of freedom system because the full tank behaves like single mass and partially filled tank behaves like two mass structures. For seismic stability of the water tank the structure is analyzed for (a) empty condition (b) full tank condition and (c) partially filled tank condition in partially filled tank due to sloshing of liquid the impulsive and convective hydrodynamic pressure to be applied to tank side walls so the sloshing effect on elevated water tank is considered in zone 2 and zone 5 for optimum design of it. The effect of sloshing to be considered while designing the elevated water tank. Sufficient permitted board to be allowed based on sloshing wave height. For structural engineers dynamic analysis of such tanks is very important and such analysis is carried out for empty tank and full tank condition with sloshing effects, in this study.

III. OBJECTIVES

This Present study is concentrated on the effects of sloshing on Analysis of Elevated Intze overhead water tank. The objectives of this study are as follows:

- 1. To study the sloshing impact on circular elevated intze water tank with seismic loading condition according to IS 1893-2002 (Part-II).
- 2. To consider effect of different staging systems on the overall behaviour of E.S.R. The comprehensive study will be concluded by suitable conclusions based on the results obtained.
- 3. To study and compare the results which are obtained from SAP 2000 for tank empty, tank with full capacity and tank full capacity with sloshing.
- 4. To Study the seismic parameters for zone-2 and zone-5.
- 5. To study the critical load parameters under the following conditions.
- a) When tank is empty.
- b) When tank is full, by considering hydrostatic forces.
- c) When tank is full, by considering sloshing effect.

IV. METHODOLOGY

SUMMARY OF LITERATURE REVIEW

Following methodology is adopted to analyses elevated intze water tank.

- 1. R.C.C Elevated intze water tank is considered for the study and it is analyzed in SAP2000 Software.
- 2. There are six models are considered.
 - A. Water tank subjected to gravity load with empty water.
 - B. Tank subjected to gravity load with full water.
 - C. Tank subjected to seismic load for zone-2.
 - D. Tank subjected to seismic load for zone-5.
 - E. Tank subjected to seismic and sloshing effect for zone-2.
 - F. Tank subjected to seismic and sloshing effect for zone-2.
- 3. Analyse the models by Equivalent static analysis using IS 1893-2002(Part-II).
- 4. Initially member sizes are assumed for beam and columns, later member sizes are optimised based on the system adopted.
- 5. From the Conclusions are made based on the results obtained.

MASS IDEALIZATION:

If elevated water tank is fully filled with liquid then it has been analyzed as one mass structure, if it is partly filled with liquid then it has been analyzed as two mass structure by taking the effect of sloshing movement of liquid and in both the cases the ductile behavior of the structure is completely different. So effect due to sloshing to be taken into account in partly filled liquid tank and spring-mass module to be done for both the cases.

structure, in which one expressing mass of structure plus impulsive mass behaves like reversed pendulum with stiffness which is equivalent to staging (Ks) and on other side it signifying convective mass with stiffness due to spring(Kc).

For tank shapes like intze, conical other than round and four-sided tank rate of h / D will resemble towards of an comparable round container of similar capacity also dia. equivalent to dia. of chamber at container level of water; & m i , m c , h i, h i*, h c , h c* and K c of equivalent round container will be used.

RECOMMENDATIONS OF IS 1893 PART – II: 1. TIME PERIOD

A) Impulsive Method

Time period of impulsive method, in second specified by

T i = 2 π ((m i + m s)/Ks) 0.5

The toughness of the staging is the lateral energy would be apply to the center of gravity of elevated water storage container to origin equivalent unit lateral movement. The elasticity of braced beam will be measured in manipulating the lateral stiffness (Ks) of water storage tank with moment-resisting frame.

B) Convective Method

Time period of convective method, in second given by

T c = 2π (m c / K c) 0.5

mc and Kc value can be obtained from IS 1893 part II for circular and rectangular tanks. Subsequently the mathematical equations for mc and K c are known, the equation for T c can be instead stated such as:

Tc = Cc (D/g) 0.5 (Circular tank)

Tc = Cc (L/g) 0.5 (Rectangular tank)

2. DAMPING

Damping will be in use as 0.5 percent of critical for convective method for all kinds of water and for all kinds of storage tanks and for impulsive case damping will be taken as 2 percent of critical damping for steel water storage containers and 5 percent of the critical damping for masonry or concrete water storage containers.

3. HORIZONTAL SEISMIC COEFFICIENT The designed horizontal seismic coefficient, Ah will

acquired from subsequent expression, subject to modifications

 $Ah = \underline{ZI} * \underline{Sa}$

g

2 R

where,

Z = Zone factor given in Table 2 of IS 1893 (Part-II):2002

I = Importance factor given in Table 3.1,

R = Response reduction factor given in Table 3.2, and Sa/g= Average response acceleration coefficient as given by Fig. 2 and Table 3 of IS1893 -Part -II: 2002.

4. SLOSHING WAVE HEIGHT

The amplitude of the sloshing is analytical study of the amount of the ground motion. Wave height due to maximum sloshing is specified as follows,

d max = (A h) c x R x D^2 (Circular tank) d max = (A h) c x R x L^2 (rectangular tank) Where,

D - Inner diameter of circular tank,

L - Circular and Rectangular tank inside length corresponding to the course of earthquake force.

5. HYDRODYNAMIC PRESSURE

During lateral seismic effect, the pressure generated on tank wall is horizontal hydrodynamic pressure and base governed by hydrodynamic pressure in vertical direction.

A) Hydrodynamic Pressure due to impulsive effect (as per IS1893-PartII)

The Pressure generated by impulsive motion of liquid on circular liquid tank wall and base is specified as follows,

 $Piw = Q iw(y) (A h) i \rho g h \cos \varphi$

Qiw (y) = 0.866 x (1 - (y/h) 2) x tan h (0.866 x (D/h))

P iw - Horizontal hydrodynamic impulsive pressure on the wall, ρ – Liquid density, ϕ – Angle due to Circumferential, y – It is the distance between the point on container wall corresponding to bottommost of container wall.

B) Hydrodynamic Pressure due to convective effect (as per IS1893-PartII) The Pressure generated by convective motion of liquid on circular liquid tank wall and base is specified as follows, Horizontal convective pressure on side barrier p cw, is specified as follows Pcw = Qcw (y) (A h) c ρ g D (1 - cos² ϕ) x cos ϕ The vertical direction pressure due to convective motion of liquid on tank base slab (y = 0) Pcb = Q cb (x) x (A h) c x ρ g D

V.TANK MODELLING AND LOADING DATA

- 1. Top dome plate thickness: 150mm
- 2. Tank wall plate thickness: 200mm
- 3. Bottom conical dome plate thickness: 300mm
- 4. Top ring beam dimension: 350*500mm
- 5. Bottom ring beam dimension: 800*500mm
- 6. Circular ring beam dimension: 400*500mm
- 7. Top ring dimension: 350*500mm
- 8. columns Dimensions : 400*600mm
- 9. And Of height (including 1m inside GL) : 2600mm
- 10. Bracings : 300*450mm
- 11. Water pressure: 49.05KN/m2.
- 12. Sloshing effect: 3.29KN/m2.

Figure:Cross Sectional elevation of intze water tank with dimensions are in Meters

Analyzed Models in SAP 2000:

Figure: Deformation of water tank with no water

2.66 2.47 2.28 1.9 1.71 1.52 1.33 1.14 0.95 0.76 0.57 0.38 0.19

Figure: Deformation of water tank with water pressure

Figure: Deformation of water tank with water pressure in Zone-2.

Figure: Deformation of water tank with water pressure in Zone-5.

Figure: Deformation of water tank with sloshing in Zone- 5.

Figure: Deformation of water tank with sloshing in Zone- 2.

VI. RESULTS AND DISCUSSIONS.

[1] SUPPORT REACTIONS

Table: Support reactions of Intze Tank with water pressure and gravity load.

SUPPORT REACTIONS									
Node	Load Condition	Horizontal		Vertical					
		Fx KN	Fz KN	Fy KN					
780	LOAD CASE 3	0.693	-	2523.069					
			0.0000033 2						
784	LOAD CASE 3	-0.457	-0.18	2521.629					
788	LOAD CASE 3	0.555	-	2018.455					
			0.0000026 56						
792	LOAD CASE 3	-6.658E- 07	-0.189	2015.433					
796	LOAD CASE 3	-0.274	0.108	1512.978					
800	LOAD CASE 3	1490.089	-59.876	536.141					
804	LOAD CASE 3	0.002686	228.882	- 0.004654					
808	LOAD CASE 3	- 0.0008373	548.195	- 3367.018					
Table:	Support read	ctions of	Intze T	ank with					

Hydrostatic pressure subjected to seismic load in Zone-2

SUPPORT REACTIONS								
Node	Load Condition	Horizonta	Horizontal					
		Fx KN	Fz KN	Fy KN				
780	LOAD CASE 4	17.186	0.332	1597.721				
784	LOAD CASE 4	25.094	-6.551	1641.934				
788	LOAD CASE 4	33.616	-0.46	1760.397				
792	LOAD CASE 4	25.808	5.975	1864.654				
796	LOAD CASE 4	18.059	-0.351	1877.473				
800	LOAD CASE 4	26.411	-6.509	1840.617				
804	LOAD CASE 4	34.622	0.491	1712.093				
808	LOAD CASE 4	25.754	7.072	1610.182				

Table: Support reactions of Intze Tank with Hydrostatic pressure subjected to seismic load in Zone-5.

٦

٦

SUPPORT REACTIONS

Node	Load Condition	Horizontal	Vertical	
		Fx KN	Fz KN	Fy KN
780	LOAD CASE 4	-0.425	0.0009525	1787.414
784	LOAD CASE 4	-0.351	-0.286	1788.704
788	LOAD CASE 4	0.001235	-0.46	1760.394
792	LOAD CASE 4	0.363	-0.289	1717.882
796	LOAD CASE 4	0.448	-0.02	1687.794
800	LOAD CASE 4	0.318	0.27	1693.312
804	LOAD CASE 4	-0.017	0.491	1712.102
808	LOAD CASE 4	-0.339	0.293	1757.469

Table: Tank with full capacity by considering sloshing effect in seismic zone-2

SUPPORT REACTIONS

SUITORT REACTIONS									
Node	Load Condition	Horizontal	Horizontal						
		Fx KN	Fz KN	Fy KN					
780	LOAD CASE 4	62.975	1.193	1104.521					
784	LOAD CASE 4	91.249	-22.838	1260.33					
788	LOAD CASE 4	121.014	-0.46	1760.405					

792	LOAD CASE 4	91.963	22.263	2246.26
796	LOAD CASE 4	63.848	-1.212	2370.638
800	LOAD CASE 4	94.251	-24.134	2223.611
804	LOAD CASE 4	124.681	0.492	1712.07
808	LOAD CASE 4	93.594	24.697	1227.235

Table: Tank with full capacity by consideringsloshing effect in seismic zone-5

Node	Load Condition	Horizonta	ıl	Vertical
		Fx KN	Fz KN	Fy KN
780	LOAD CASE 4	-0.642	-102.501	1990.362
784	LOAD CASE 4	34.962	-83.821	2483.574
788	LOAD CASE 4	-0.189	-62.743	2840.848
792	LOAD CASE 4	-35.182	-83.952	2483.168
796	LOAD CASE 4	0.643	-102.658	1990.363
800	LOAD CASE 4	36.092	-83.742	1493.908
804	LOAD CASE 4	0.189	-62.419	1130.933
808	LOAD CASE 4	-35.873	-83.611	1493.504

[2] Critical Beam and Column Staging

Table: Critical beam and column of Intze Tank with water pressure and gravity load

Bea o	Load Case N	Nod e	Ax ial force	Shear	Force	Bend ent	ing	mom
			Fx KN	Fy KN	Fz KN	Mx KN- m	My KN- m	Mz KN- m
34	COMBINAT ION LOAD CASE 4	308	400.5 02	- 73.36 6	12.40 1	2.493 6	1.041 3	- 7.217 6
32	COMBINAT ION LOAD CASE 4	310	334.6 74	231.0 08	12.49 3	0.877 5	2.420 8	- 7.179 1
40	COMBINAT ION LOAD CASE 4	315	230.2 53	- 333.7 41	15.72 8	5.687	1.116 9	- 7.020 9
38	COMBINAT ION LOAD CASE 4	312	73.15 7	398.6 33	12.39 9	- 0.939 6	2.361 2	- 7.025 1
17	COMBINAT ION LOAD CASE 4	389	50.97 4	10.13 1	6.126	- 0.389 5	1.861 5	0.009 9
19	COMBINAT ION LOAD CASE 4	387	43.08 8	- 28.79 8	6.118	1.038	1.581 7	0.007 8
8	COMBINAT ION LOAD CASE 4	391	28.69 5	42.93	6.128	- 1.590 5	1.040 6	0.01
12	COMBINAT ION LOAD CASE 4	263	21.92 1	4.646	91.16 5	38.99 84	- 46.01 99	- 6.557 1

Table: Critical beam and column of Intze Tank with Hydrostatic pressure subjected to seismic load in Zone-5.

© August 2019 | IJIRT | Volume 6 Issue 3 | ISSN: 2349-6002

Be	Load Case	Nod	Ax	Shear	Force	Bendi 1	ng mom	ent
ao		e	ial fo					
			rc e					
			Fx	Fy	Fz	Mx	My	Mz
			Κ	KN	Κ	KN-	KN-	KN-
			Ν		Ν	m	m	m
27	COMBINA	318	444.0	83.05	12.57	-	-	4.08
	TION		97	6	9	0.6149	4.2269	98
	LOADCAS							
	E 4							
17	COMBINA	310	385.6	262.4	11.96	3.7049	-	-
	TION		35	48	4		3.210	2.96
	LOAD CASE 4						4	22
22	COMBINA	211	261.4	2926	15 97			2 27
55	TION	511	201.4	303.0 01	13.07	-	-	5.27 00
	LOAD		11	04	1	2.9904	0.100	09
	CASE 4						3	
36	COMBINA	389	122.4	-	6.183	-	-	-
	TION		99	24.37		0.8124	4.0907	0.00
	LOAD			4				85
	CASE 4							
12	COMBINA	263	111.0	53.58	121.0	68.126	-	-
	TION		9	9	95	7	92.798	14.1
	LOAD						9	68
15	CASE 4	205	100.1		C 1 4 4			0.00
45	TION	395	102.1	-	6.144	-	-	0.00
	LOAD		00	08.25		2.2093	5.5944	17
	CASE 4			9				
6	COMBINA	269		33.42	117.3	12.056	-	15.2
Ŭ	TION	-07	76.67	5	73	6	121.74	939
	LOAD		2	č		0	12	, ,
	CASE 4							
96	COMBINA	787		-	1717.	1.380	159.54	0.38
	TION		/4.60	0.47	981	8	19	21
	LOAD		8	2				
	CASE 4							

Table:	Critic	cal	beam	and	i colur	nn	Tank	W	vith	full
capacit	y by	coi	nsideri	ng	sloshin	g e	ffect	in	seis	smic
zone-5										

Bea m	Load Case	Nod e	Axial force	Shear	Force	Bendin	g mome	ent
No			Fx KN	Fy KN	Fz KN	Mx KN-m	My KN-m	Mz KN- m
27	COMBINA TION LOAD CASE 4	318	448.3 56	83.77 8	12.52 5	0.1336	- 6.0496	1.941 7
17	COMBINA TION LOAD CASE 4	310	404.3 93	2737 43	11.23 7	4.8545	- 5.6689	0.048 5
33	COMBINA TION LOAD CASE 4	311	271.0 48	399.7 42	16.35 3	- 4.0653	0.5976	0.750 3
12	COMBINA TION LOAD CASE 4	263	160.0 63	81.86 1	148.5 97	87.053 5	- 134.87 2	- 17.97 7
96	COMBINA TION LOAD CASE 4	787	149.1 83	- 0.472	1717. 986	1.3807	319.39 72	0.761

36	COMBINA TION LOAD CASE 4	389	123.2 43	- 24.52 2	6.234	- 0.8194	- 4.2077	- 0.008 7
44	COMBINA TION LOADCASE 4	396	120.0 38	- 23.8 87	6.236	- 0.8431	- 3.9723	- 0.010 9
45	COMBINA TION LOAD CASE 4	395	100.7 9	- 67.3 38	6.176	- 2.3132	- 3.436 6	- 0.001 8

[3] Time Period

Table: Time period for all condition of the intze water tank

Tank	Tank	Tan k	Tan k	Tank	Tank
with	with no	with	with	with	with
hydrosta				sloshi	sloshin
tic load	hydro	hydr o	hydr o	ng and	g and
	static	stati c	stati c	hydro	hydro
	load	load in	load in	static	static
		zone-2	zone-5	load in	load in
		1 0 1 1 0		zone- 2	zone-5
1.104402	1.1527	1.0419	1.0419	1.52867	1.041942
	47	42	42	6	
	1.0153	0.9352	0.9352	1.29610	
0.973363	55	75	75	8	0.935275
	1.0048	0.8950	0.8950	1.12740	
0.953234	43	1	1	5	0.89501
	0.1818	0.1717	0.1717	0.21395	
0.175719	74	42	42	1	0.171742
	0.1522	0.1394	0.1394	0.15870	
0.14625	56	25	25	1	0.139425
	0.1389	0.1352	0.1352	0.14762	
0.135817	9	41	41	9	0.135241
	0.1257	0.1213	0.1213	0.12775	
0.121612	42	04	04	4	0.121304
	0.1173	0.1131	0.1131	0.12600	
0.113868	35	48	48	1	0.113148
	0.1171	0.1039	0.1039	0.11453	
0.11376	28	13	13	5	0.103913
	0.1078	0.0972	0.0972		
0.104864	6	9	9	0.11439	0.09729
	0.0802	0.0793	0.0793	0.10599	
0.079802	43	57	57	1	0.079357
0.074098	0.0749	0.0728	0.0728	0.09118	0.072802
	85	02	02	9	
	Tank with hydrosta tic load 1.104402 0.973363 0.953234 0.175719 0.14625 0.135817 0.121612 0.113868 0.11376 0.11376 0.104864 0.079802 0.074098	Tank Tank with with no hydrosta hydro tic load hydro static load 1.104402 1.1527 47 1.0153 0.973363 55 1.0048 0.953234 0.953234 43 0.1522 0.1818 0.175719 74 0.1522 0.14625 0.1389 0.1257 0.1257 0.1257 0.121612 42 0.1173 0.1173 0.113868 35 0.10178 0.1078 0.104864 6 0.079802 43 0.074098 0.0749 85 85	Tank Tank Tank Tan k with with no with with hydrosta hydro hydro tic load hydro hydro static load load in zone-2 load load in 1.104402 1.1527 1.0419 47 42 load in 0.973363 55 75 1.0048 0.8950 0.973363 55 75 1.0048 0.8950 0.953234 43 1 0.1777 74 42 0.1522 0.1394 0.1177 0.175719 74 42 0.1257 0.1213 0.1352 0.135817 9 41 0.1257 0.1213 0.1131 0.112612 42 04 0.1173 0.1131 0.1138 0.1173 0.1131 0.11376 0.11078 0.0972 0.104864	Tank with hydrostaTank with with hydro static loadKTan with with kith loadtic load hydro static loadhydro static loadhydro static loadhydro static load1.1044021.15271.04191.04194742421.01530.93520.93520.9733635575751.00480.89500.89500.9733635575751.00480.89500.89500.95323443110.1757197442420.15220.13940.13940.146255625250.13890.13520.13520.13890.13520.13520.13762813130.10780.09720.09720.1048646990.0798024357570.0740980.07490.07280.0728	Tank with hydrostaTan with with hydro static loadTan with with with with with static loadTan with with with static loadTan with with stoshitic load loadhydro static loadhydro static load in zone-2ng and hydro load in zone-21.1044021.15271.04191.04191.5286747424261.01530.93520.93521.296100.97336355757581.00480.89500.89501.127400.953234431150.17571974424210.15220.13940.13940.158700.1462556252510.13890.13520.13520.147620.13890.13520.13520.147620.13890.13520.12130.127750.121612420440.11730.11310.11310.126000.11386835484810.11770.10390.10390.114530.1137628131350.10780.09720.09720.0798020.07980243575710.0740980.07490.07280.07280.0911885020299

Figure: Plot mode v/s Time Period

VII. CONCLUSIONS

- From the study on comparing beam elements of tank, the maximum axial force in sloshing case increases nearly by 45% as in hydrostatic case, 28% in shear force and 25% increase of bending moment.
- On examining the critical elements of staging, the maximum axial force in sloshing case increases nearly as 35% as in hydrostatic case, 25% in shear force and 5% increase of bending moment.
- 3. From the results obtained check for critical members also reveals that the tank is stable for hydrostatic case of analysis but not when sloshing is included in the analysis for which the critical elements values are exceeding the limiting values as obtained from analysis by considering hydrostatic forces.
- 4. It is clear that all critical quantities are increasing while considering sloshing effect in our design procedure. In order to avoid the failure much preference to be given to sloshing in earthquake prone region and sufficient free board to be provided to govern the sloshing movement of liquid.

FUTURE SCOPE

- 1. By the use of advanced software like ABAQUS try to model the exact Sloshing wave formation.
- 2. To check the effect of Sloshing during Earthquake for more critical soil condition.
- 3. To analyze about the participation of higher modes due to Sloshing effect in a very detailed manner.
- 4. What will be the effect in case of altering the geometry of tank, in order to optimize the design.
- 5. Analyze the different Slosh suppression techniques and suggest he most efficient method of Control of Sloshing.
- 6. In case of providing of baffle walls, have to find out what is the best suitable material, either concrete or any composite material.
- 7. How this technique can be applied to other areas where the major problem is sloshing such as fuel tanks of space vehicles, ships, moving tankers.
- 8. Have to formulate the exact position, shape and the no of baffle walls to be provided.

REFERENCES

- George Housner, The Dynamic Behavior Of Water Tanks, Bulletin of the Seismological Society of America. Vol. 53, No. 2, pp. 381-387. February, 1963.
- [2] Sarvesh K Jain, A Review of Requirements in Indian Codes for Aseismic Design of Elevated Water Tanks, Bridge and Structural Engineer-Vol XXIII, No1, Mar 1993.
- [3] Ankesh Birtharia and Sarvesh K Jain, Recent Advances in Liquid Sloshing Dynamics Applied Mechanics Reviews, vol. 54, issue 2, 2001, pp. 133-139
- [4] Chirag N Patel, Performance of elevated tanks in Mw 7.7 Bhuj earthquake of January 26th, 2001 Proc. Indian Acad. Sci. (Earth Planet. Sci.), 112, No. 3, September 2003, pp. 421 to 429
- [5] Jaiswal.O.R, Modified Proposed Provisions AseismicDesign Liquid Storage Tanks Part I -Commentary And Examples Journal Of Structural Engineering Vol. 32, No.4, October– November 2005 pp. 297–310
- [6] Sudhir K Jain and Jaiswal.O.R, Modified Proposed Provisions ASeismicDesign Liquid Storage Tanks Part I - Codal Provisions Journal Of Structural Engineering Vol. 32, No.3, August–September 2005, pp 195-206.
- [7] Mangulkar Madhuri, Review On Seismic Analysis Of Elevated Water Tank International Journal of Civil Engineering and Technology (IJCIET), Volume 4, Issue 2, March - April (2013)
- [8] Shenton, H. and Hampton, F. Seismic Response of Isolated Elevated Water Tanks Journal of Structural Engineering, Vol 125 issue 9, Sep 2009, pp 965–976.
- [9] Punmia.B.C Jain Ashok Kr., Jain Arun Kr., Reinforced Concrete Structures Volume 2, Laxmi publications, 1992. ISBN: 978-81-318-0666-1
- [10] IS Codes : IS 1893-2002 Part I & II Criteria for Earthquake Resistant Design of Structures, IS 4326-1993 Code of practice for Earthquake Resistant Design and Construction of Buildings, IS 11682-1985 Criteria for Design of RCC Staging for Overhead Water Tanks, IS 456-2000 Code of Practice for plain and Reinforced Concrete.