
© April 2020 | IJIRT | Volume 6 Issue 11 | ISSN: 2349-6002

IJIRT 149131 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 55

Methods in complexity of algorithms

Mr.Yashwanth Balan
1
, Ms.Apoorva R Narendra

2
, Ms. Pooja V

3

1,2,3
T.John College, Bengaluru, India

INTRODUCTION

An algorithm is a step by step instructions designed

to perform a specific task. It can be a simple method,

for addition, multiplying two numbers, or a complex

operation,

The step by step procedure to complete a task with in

a finite number of steps is known as an algorithm in

general.

Algorithmic complexity is concerned about how fast

or slow particular algorithm performs and how much

memory it requires .Complexity of algorithm is a

function of size of input of a given problem instance

which determines how much running time/memory

space is needed by the algorithm in order to run for

the completion .

Algorithm analysis refers to the task of determining

the computing time and storage space requirement of

an algorithm. This is known as analysis performance

or algorithmic efficiency which enables us to select

an efficient algorithm.

When we have a problem to solve, there may be

many algorithms to solve, and we will be choosing

the best in it. The selection of best algorithm is

possible by analysing the algorithms in proper

manner.

We can analyse the algorithm in two ways

1. The correctness of the algorithm

2. Checking time complexity and space complexity

To calculate the analysis of algorithm, two types are

needed

1. Priori analysis

2. Posteriori analysis

A. Priori Analysis

One of the creative analysis of algorithm. Will be

having a function which bounds the algorithm

computing time For example, if there a statement in

the middle of the program, we have to calculate the

total time that statement will spend for execution,

given by some initial state of input data. This needs

mainly two types of information

a. The statement of frequency count

b. The time taken for an execution

Since the time per execution depends on both, the

machine being used and the programming languages

used together with its compiler, a priori analysis

limits itself to determine the frequency count of each

statement.

The notation used in the priori analysis Big-Oh (O),

Omega (), theta (θ)

Priori analysis computing time ignores all of the

factors, which are machine or programming language

dependent and only concentrates on determining the

order of the magnitude of the frequency of execution

of the statements.

B. Posteriori Analysis

Will be collecting the actual statistics about the

algorithm, conjunction of the time and space while

executing.

To test is

a. Debugging – It is the process of executing

programs on sample data sets that determine

whether we get proper results ,if the fault occurs

it has to be corrected

b. Profiling- The process of executing a correct

program on actual data sets and measuring the

time and space it takes to compute the results

during execution. The actual time taken by the

algorithm to process the data is called profiling.

In order to perform any of the above tasks two kinds

of efficiencies are needed

1. Space Efficiency /Space Complexity

2. Time Efficiency/Time Complexity

Space Complexity

The count of required temporary storage required for

running the algorithm

The space needed by an algorithm consists of the

following components

© April 2020 | IJIRT | Volume 6 Issue 11 | ISSN: 2349-6002

IJIRT 149131 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 56

1. Fixed static part

This part typically includes the instruction space,

space for simple variables, space for constants and

fixed size components variable

2. Variable dynamic part

It consist of space needed by component variables

whose size is dependent on the particular problem

instance at runtime being solved

Time Complexity

The total time required to run the program is noted as

time complexity. The total time taken by the program

is the sum of the compile and run time. The compile

time doesn’t depend on the characteristics and it can

be assumed as a constant factor.

Measuring Input size

The analysis of an algorithm will be focused on input

size ‘n’. It is to find the logical part of an algorithm

efficiency as a function of some criteria indicating ‘n’

as size of the input.

Units for measuring running time

It is not possible to measure the running time by

seconds, milliseconds. There should be a metric that

doesn’t not depend on these factors.

1. Operation counts

2. Step Counts

3. Asymptotic notation

1. Operation counts

The time and the space are the two measures for the

efficiency of the algorithm. In operation counts the

time is measured by counting the number of base

operations or main operations.

The basic operations are defined that times for the

other operations is much less than or almost

proportional to the time for the basic operations

The operation count concentrate on important basic

operations, multiplications, for loop or while loop

where it takes considerably more time than any other

operations in an algorithm

2. Step Counts

In step count we attempt to find the time spent in all

parts of the program. A step is any computational

unit that is independent of the selected

characteristics.

There is another method in step count of an

algorithms is to build table in which we list the total

number of steps contributed by each statement .This

is to find the number of steps in each execution of

the statement and the total time each statement will

be executing.

3. Asymptotic Notations

The asymptotic efficiency of algorithm is to find how

the running time of a function will increases with the

size of the input in the limit as the size of input

increases without bound.

To simplify the asymptotic analysis there are

methods.

1. Big –Oh-notation (O)

2. Omega notation (Ω)

3. Theta notation (θ)

Big –Oh-notation (O)

The big oh notation gives an upper bound on function

f(n).The upper bound of f(n) indicates that the

function f(n) will be worst case I doesn’t consume

more than this computing time.

Omega notation (Ω)

This is used to find the lower bound of f(n).The lower

bound implies that below this time the algorithm

cannot perform better .The algorithm will take at

least this much time .And the notation is called

Omega notation (Ω)

Theta notation (θ)

The theta notation can be used when the function f(n)

can be bound both from above and below by the

same function f(n). for some function lower bound

and upper bound will be the same . And this notation

is called theta (θ)

CONCLUSION

Algorithmic complexity is concerned about how fast

or slow particular algorithm performs and how much

memory it requires .Complexity of algorithm is a

function of size of input of a given problem instance

which determines how much running time/memory

space is needed by the algorithm in order to run for

the completion.

And above mentioned methods are to find the

complexity in different levels.

© April 2020 | IJIRT | Volume 6 Issue 11 | ISSN: 2349-6002

IJIRT 149131 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 57

ACKNOWLEDGMENT

I thank Dr. Felcy Judith (Head of Computer

applications Dept. T John College) for the

encouragement and technical support to make this

paper successful.

