
© May 2020 | IJIRT | Volume 6 Issue 12 | ISSN: 2349-6002

IJIRT 149361 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 135

Basic Indexing Techniques in Relational Database

Vinitha C
1
, Soumya Unnikrishnan

2
, Jinesh V N

3

1,2
 Dept. of CA, Tjohn College, Bengaluru

3
Dept. of CS&A, BU, Bengaluru

Abstract- Indexing is a data structure technique to

efficiently retrieve records from the database files based

on some attributes on which the indexing has been

done. Indexing is used to optimize the performance of a

database by minimizing the number of disk accesses

required when a query is processed. This work focuses

on various indexing methods used in RDBM files to

enhance and optimize the query processing.

Index terms- Indexing, Dense indexing, Sparse Indexing

I.INTRODUCTION

Any operation in database causes operations on the

records where the database is stored. Millions of data

transactions taking place every second, database

optimization is a key area of optimization and hence

the area of research also. Lack of database

optimization in relational databases may result into

significant costs to both the client and the developer.

This paper presents the various database indexing

techniques used in commercial DBMS for the

optimization of the databases operations.

II. INDEXING OF RECORDS

Database is stored as collection of files. Files can be

of two types

A. Primary File

Primary File contains the actual data. Database is a

collection of relations. One relation may be stored in

a single file or may be stored in several files. One file

can also store multiple relations.

B. Secondary File

Secondary File also called auxiliary file or indexed

file which is provide an data structure to access the

data efficiently. The primary file is stored in

secondary storage and size is too large .Indexing is

used to improve the performance of a database by

reducing the number of disk access. The index

created on some data base column it may be key or

non-key. The structure of index is as shown below

Search Key Data Reference /Address

Fig.1 Structure of index [1]

The search key contains the copy of primary key or

candidate key or may me any non-key attributes.

The second column of the database is the data

reference. It contains a set of pointers holding the

address of the disk block where the value of the

particular key can be found.

Index can be single level or multi-level.

In single level indexing index file maps directory to

the block or the address of the record.

Multi-level index has multiple levels of indirections

among indexes.

The Index file consists of records with two fields

search key and data reference. This file smaller than

the primary file. Index file can be dense or sparse. In

dense indexing for each record in the primary file one

entry is created in the index file. The number of entry

in the index file is same as the number of records in

the primary file.

Fig. 2. Dense Index [1]

In the above figure the first table is index file and the

second table is primary file. The index is created

based on the first column in the primary file. The

index file contains the copy of the first column and

created a link to each record in the primary file. This

kind of indexing is called dense indexing.

In sparse indexing the index file will not have the

entry for all the records in the primary file. It will

create the mapping for only few records. So the

© May 2020 | IJIRT | Volume 6 Issue 12 | ISSN: 2349-6002

IJIRT 149361 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 136

number of entries in the index file is less than the

number of records in the primary file.

Fig. 3 Sparse Index[1]

In the above figure the index file contains only few

entries and it is not created the link to all records of

the primary table. These kinds of indexing are calls

sparse index.

Indexing Methods

1. Ordered Indices

2. Primary Index

3. Secondary Index

4. Clustering Index

1. Ordered Indices

The indices are normally sorted to make the

searching faster such kind of indices is called ordered

indices.

2. Primary Index – The records in the blocks (small

unit in the secondary storage) are stored in the sorted

order of the primary key. Index is creating on this

primary key i.e the search key is primary key and

which is ordered. Since we are using the primary key

which is unique and sorted so the index file contain

the key of the first record in each block. Remaining

records can be accessed based on the first record. So

this index is sparse and the number of entries in the

index file is equal to the number of blocks used to

store the records.

3. Clustering Index – The secondary index is created

on a ordered non key attribute .Since it is non-key the

values may be duplicated it is not unique. So the

records are stored in the sorted order of the non key

attribute. The index file creates an entry for each

unique search key. So the number of entries in the

clustered index file is equal to the number of distinct

non key attribute. The non key may be repeated and

we are not creating the entry in index file .Hence it is

sparse indexing.

In the below figure Dept Id is a non-key and it

contains duplicates. The first block contain dept id 1

and 2. The index file contains only distinct dept id

and created the link to the block which started storing

dept id. Here all the records are sorted.

Fig. 4 Clustering Index[1]

Another Implementation of cluster indexing is shown

below

Fig. 5 Clustering index [1]

Here index file contains only distinct values and link

is created for the first block which contains the value.

Here one each block contain only one value. The

second block is full then the same dept id is stored in

© May 2020 | IJIRT | Volume 6 Issue 12 | ISSN: 2349-6002

IJIRT 149361 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 137

the third block and created a link from second block

to third. The first and second implementation is

dense.

4. Secondary indexing – can be created on either

using key or using non key attribute but which is not

in order. The record is not stroed in any order. The

secondary indexing can be dense or sparse.

Secondary index using key attribute –In this case

since we are using key and the records are not in

order , the index file create the entry for each key

value and corresponding address. Hence it is a dense

indexing, and the number of entries in index file is

equal to the number of records in the primary file.

Secondary index using non key attribute –In this case

since we are using non key attribute and the records

are not in order , the index file create the entry for

each key value and corresponding address. Then the

index file will be sorted. Hence it is a dense indexing,

and the number of entries in index file is equal to the

number of records in the primary file. Here the index

file contains many duplicate and even the index file is

sorted the binary search algorithm also will not give

better performance. The below figure shows another

method

Fig. 6 Secondary index [2]

Here we have primary level index and secondary

level index. The primary level index file will contain

the entry for each distinct search key and the pointer

(address) is pointing to Secondary level which

contains the actual address of all duplicates which

points to the actual physical location. The number of

entries in the index file is equal to the number of

distinct search key and which is sorted. Hence this

indexing is sparse.

III. SUMMARY AND CONCLUSION

Indexing is a collection of data entries plus a way to

quickly find entries with given search key values.

Indexing should be used in databases where selection

queries are frequent. Indexing should be done on

large databases where retrieval of data is performed

very frequently. After gone through the various

indexing techniques it is found that:

 Hash indexing provides best response time while

working on individual keys.

 Bitmap indexing is best suited with low

cardinality of key values.

 B-tree indexing works well in range and equality

comparisons.

But, the B-tree indexing is widely used in the

database systems as majorly queries are based on the

combination of range and equality comparison.

IV. CONCLUTION

Indexing is method of data entries to quickly find

data with given search key values. If selection queries

are frequent then Indexing should be used. Indexing

must be done on large databases where retrieval of

data is performed very frequently.

A detailed study should be done about indexing and

advanced data storage techniques such as block

chaining. Efficiency of these indexing in such

techniques.

REFERENCE

[1] https://www.javatpoint.com/indexing-in-dbms

[2] https://www.guru99.com/indexing-in-database.

html

