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Abstract- In this paper, we present concepts in artificial 

neural networks (ANN) to help detect intrusion attacks 

against network computers, and introduce and compare 

a multi-layer perceptron ANN (MLPANN) with Snort, 

an open-source tool for intrusion detection systems 

(IDS). To conduct these comparison experiments, we 

inserted malicious traffic into the MLPANN to train our 

ANN, with results indicating that our ANN detected 

99% of these input attacks. 
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1. INTRODUCTION 

 

Currently, computer systems are routinely hacked by 

bots [4], viruses or other harmful entities, as 

evidenced by much research on attack incidences and 

their consequences. These attacks cause a loss of 

billions of dollars worldwide annually. The 

propagation of malware is always aided by unpatched 

systems, or users who click on any link that 

represents their mailbox. In the coming years, we will 

witness a great explosion of internet access by other 

devices such as televisions, cell phones and others 

electronic devices. With internet commerce 

becoming more common, it is expected that criminal 

activity will increase. 

Detecting attacks against computer systems is an 

arduous task; it was better studied when Snort [2] 

was developed and its source code was distributed. 

Since then, many features of Snort have been 

improved and other concepts have been incorporated. 

The neural network (NN), also known as and referred 

to herein as an artificial neural network (ANN), is a 

viable alternative to detecting such attacks. In this 

paper, we report our usage of the multi-layer 

perceptron algorithm to detect three types of network 

attacks and Snort to compare among these attacks. 

[7]. 

This paper is divided into eight sections as follows: 

Section 2 covers the basic concepts concerning the 

three presented attack types; Section 3 explains the 

multi-layer perceptron, and how we collected data to 

input into our ANN; Section 4 covers how we trained 

our ANN; Sections 5 and 6 detail how the algorithm 

was implemented; Section 7 explains how the results 

were obtained; and Section 8 presents the conclusion 

of our research. 

 

2 PRELIMINARY CONCEPTS 

 

To collect the data that facilitated the training of our 

NN, we chose three types of attacks: 

Ping of death 

This attack type sends a malicious or malformed 

packet to a computer. Normally, a ping  packet is 64 

bytes long. In 1996, attackers began to take 

advantage of the packet size feature when they 

discovered that a packet broken down into fragments 

could add up to more than the allotted 65,536 bytes. 

Many operating systems were stymied upon 

receiving an oversized packet, and thus froze, 

crashed, or rebooted. 

Although, sending a packet larger than 65.535 bytes 

is illegal according the RFC 791[3], this bug is 

relatively easy to exploit. The fragmentation method 

is used to send a packet of such large size that when 

the target computer reassembles this kind of packet, a 

buffer overflow may occur. This exploitation affects 

various systems, including UNIX, Linux, Mac, 

Windows, and routers. 

The solution for this situation is to check for each 

incoming IP fragment, making sure that the sum of 

the ‘Fragment Offset’ and ‘Total Length’ fields in the 

IP header of each IP fragment is smaller than 65.535 

bytes. If the sum is larger, then the fragment is 

dropped or ignored. This check is performed by some 
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firewalls, to protect hosts that do not have the bug 

fixed. 

 

Brute Force Attacks on Port 22 

The secure shell (SSH) service became the most 

popular to access remote machines. It is easy to use, 

as there are many clients available to any modern 

operating system and, above all, the SSH has a strong 

policy to authenticate users and to protect traffic data. 

Moreover, SSH is the point used by hackers to gain 

access to systems with weak policies on passwords, 

whereby a false assurance is provided if the 

administrators do not care about this kind of problem. 

Despite the fact that SSH allows alternative ways to 

authenticate remote access, it is possible to use a 

certificate or simply type in the ‘user/ password’ 

phrases. Traditionally, the facility chooses and 

configures the user/password phrase. However, weak 

passwords are subject to guessing and to brute force 

attacks. The strength of a password is a function of its 

length, complexity, and randomness; to avoid 

selecting a weak password the administrators must 

work within these constraints. Users tend, however, 

to choose relatively weak passwords for purposes of 

easy memorization. 

 

SCAN Xmas TREE 

A common first step is recognizing the remote 

operating system. A basic approach to this endeavor 

uses a port scanner to send malformed packets to 

target machines. There are various types of scanning, 

including TCP Scanning, UDP Scanning, ACK 

Scanning, and e-Window Scanning. According to the 

answers received, the attacker draws their own 

conclusion about open ports, kernel versions, 

operating systems, and other information that is 

necessary to initiate an attack. 

The possible answers include: 

 Open or Accepted: The host sent a reply 

indicating that a service is listening on the port. 

 Closed or Denied, or Not Listening: The host 

sent a reply indicating that connections will be 

denied to the port. 

 Filtered, Dropped or Blocked: There was no 

reply from the host. 

The Xmas Tree Scan was first used in 1999, when the 

computers could not handle packets with flags FIN, 

URG and PUSH sets which caused Windows 

Operating Systems to crash. 

 

3 MULTI-LAYER PERCEPTRON 

 

Neural Network Concepts 

An ANN is a computing architecture inspired from 

natural biological information processing 

features.[5][6] 

ANNs are made up of processing units connected by 

communication channels that have multiplicative 

gains (weights). A signal into an input is multiplied 

by one weight and added to Detecting Attacks to 

Computer Networks Using a Multi-layer other 

signals, the total sum of which is applied to a 

generally non-linear activation function to calculate 

the output of each neuron. 

The ANN can be used in interconnected layers, and 

one of its more important properties is its intrinsic 

learning capacity. During supervised learning, 

examples of input-output pairs are presented to the 

network that adapts its internal weights to 

approximate the desired mapping. 

The Multi-Layer Perceptron has at least one ‘hidden 

layer’ of neurons, whose outputs are kept isolated and 

not fed into other neurons. These hidden neurons do 

not have, in principle a ‘desired output’ from 

examples, but rather utilize a well-known 

optimization technique known as the back 

propagation rule, which allows weight adjustments to 

occur. 

No reliable rules exist to determine the number and 

size of the hidden layers; this is usually accomplished 

by trial-and-error, with the user trying to find the 

smallest network that provides optimal performance. 

Presentation of examples and weight correction 

measures through the back-propagation algorithms 

continue until a stop criterion is attained. Stop 

criterion usually employ a target value for the mean-

square error over the training data. 

 

Collecting Data 

To train our neural network, the first task is to collect 

data. An important concern in this phase is to present 

unbiased data to the network. Data capture was done 

using tcdump, a packet decoder installed in most 

Unix and Linux systems. The normalization of these 

data is necessary to input data to the ANN presented 
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herein, and was accomplished with a dnsi that 

formats the fields shown in Table 1. 

During normalization, the data are collected and we 

try to input parameters as varied as possible so as not 

to incur the mistake of letting our network 

tendentious, and consequently harm the proof 

concept. Various private IP addresses for classes A 

(10.0.0.0/8), B(172.17.0.0/16) and C(192.168.0.0/16) 

were used as input. 

The fields used as input for our ANN correspond to 

the fields in the tcpdump format:protocol, source IP 

address, source port, destination IP address, 

destination port, TCP flag, and packet length. 

Table 1- Input Data in the Neural Network 

Name DescriptioN moDificatioN 

Protocol Define the Protocol : 

tcP, UDP e icMP 

WithoUt Modifications 

SoUrce_iP ADDreSS of 

SoUrceiP 

converteD to logArithMic 

ScAle 

DeStinAtio

n_iP 

ADDreSS of 

DeStinAtion iP 

converteD to logArithMic 

ScAle 

SoUrce_Por

t 

SoUrce Port converteD to logArithMic 

ScAle 

DeStinAtio

n_Port 

DeStinAtion Port converteD to logArithMic 

ScAle 

flAgS flAgS USeD bytcP 

Protocol 

WithoUt MoDificAtionS 

length length of iP PAcket converteD to logArithMic 

ScAle 

The Nmap scanner [9] was used to genarate traffic. 

Source and destination ports were varied randomly. 

 

4 NETWORK TRAINING 

 

Supervised training through the back propagation 

algorithm has two main steps: 

1. Data presentation and calculation of network 

output. 

2. Error calculation and weight changes according 

to a gradient-descent technique for optimization: 

 

 
Figure 1: Two steps of backpropagation algorithm 

The data were arranged in two sets, as is usual in 

ANN training. These sets included the training set, 

containing 7,000 examples of traffic variables, both 

for normal traffic and during an attack. Each example 

is composed of seven variables (Table 1) and a 

desired output (0 for normal traffic, 1 for attack). A 

second set (the test set) is composed of 5,000 other 

traffic variable examples that will not be used to 

adapt the ANN weights, but only to evaluate its 

performance and generalization capacity. 

Initially, the archives were preprocessed for the 

backpropagation algorithm used in the MLANN . In 

this way, were created four archives in the Excel 

format: 

 Input Matrix - Training: 7,000 x 7 dimension 

 Input Matrix - Validation: 5,000 x 7 dimension 

Each input matrix has a desired output (class), 

 and the preparation of these matrices is described 

hereinafter: 

 Output Matrix - Training: the output layer will 

consist of one node, which is responsible for 

warning of a network attack (output 1), or if the 

network traffic is normal (output 0). Thus, the 

output dimension will be 7,000 x 1. 

File output Neural net output 

0 normal traffic 

1 net under attack 

 Output Matrix - Validation: is the same 

described procedure for the Output Matrix 

 Training, described above, but the matrix 

dimension will be of 5,000 x 1. 

After the training of these archives, we will obtain 

four matrices that will store the prepared values for 

developing the ANN. 

We used the MATLAB programming language to 

develop the ANN, where the original files, previously 

described were treated for the ANN's entry. 

The logarithmic normalization procedure derives 

values between 0 and 1. However, because the 

trained ANN cannot assume this exact value range, 

we modified the exit matrices range to be between 

0.1 and 0.9, whereby an exit value of ‘1’ is changed 

to 0.9, and that of ‘0’ becomes 0.1. The final 

treatment of these files was accomplished in Excel. 

 

5 DEVELOPMENT OF THE ALGORITHM IN 

MATLAB LANGUAGE 
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The ANN's architecture was defined as follows: 

1. The Input Layer has seven responsible neurons 

for receiving the input elements (patterns) of the 

ANN; 

2. The Output Layer has one neuron, responsible 

for showing the response of the ANN; 

3. The Hidden Layer was examined initially with 

three neurons, but simulations were conducted 

with four neurons. 

Given seven input variables, the network output calls 

for seven input neurons in the first layer, one hidden 

layer whose size is varied after each training, and one 

output layer with a single neuron, indicating the 

network architecture 

 
Figure 2: Weights Generated in the Backpropagation 

Net 

Detecting Attacks to Computer Networks Using a 

Multi-layer  

Therefore, we describe the ANN as the design above 

(Table 2) with m=7 and one neuron in the exit and 

the Hidden Layer neurons (initially three). 

 

6 SIMULATIONS RESULTS 

 

As stated previously, we initially examined the 

hidden layer with three neurons obtaining the results 

presented in tables 2 – 5. 

Table 2 Learning rate equal 0.3 and 3 neurons in the 

hidden layer 

Learning 

rate 

Number of 

epochs 

Neurons in the 

hidden layer 

Training 

error 

Validation 

error 

0.3 100 3 0.1889 0.1932 

0.3 300 3 0.0906 0.0892 

0.3 500 3 0.0311 0.0372 

0.3 700 3 0.0869 0.0956 

 

7 CONCLUSIONS 

 

The need for continuous improvements in device 

security motivates new alternatives for identifying 

computer network attacks.  The use of ANNs for 

implementing network security is  an attractive 

alternative to other common and less effective anti-

attack methods. Based on the signatures of Snort [2], 

we established malicious packages for assembly of 

the ANN training files. Our results indicated a 99% 

success rate for recognizing potential attack code. 

Commercial applications require supplementary input 

parameters, such as a package timestamp and 

package payload, among others. The diversification 

of the examples is another factor to consider to 

improve the training of the ANN. Nonetheless, we 

consider our 99% success rate to be a highly 

promising framework for developing future ANNs 

against malicious traffic. 
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Learning 

rate 

Number of 

epochs 

Neurons in the 

hidden layer 

Training 

error 

Validation 

error 

0.15 100 4 0.1066 0.1108 

0.15 300 4 0.0766 0.0792 

0.15 500 4 0.0686 0.0704 

0.15 700 4 0.0683 0.0712 

 


