
© May 2020 | IJIRT | Volume 6 Issue 12 | ISSN: 2349-6002

IJIRT 149535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 673

Detecting Attacks to Computer Networks Using a Multi-

Layer Perceptron Artificial Neural Network

Mr.P.Balamuthukumar

Assistant Professor, Department of Computer Science, NIFT-TEA College of Knitwear Fashion, Tirupur,

Tamilnadu, India

Abstract- In this paper, we present concepts in artificial

neural networks (ANN) to help detect intrusion attacks

against network computers, and introduce and compare

a multi-layer perceptron ANN (MLPANN) with Snort,

an open-source tool for intrusion detection systems

(IDS). To conduct these comparison experiments, we

inserted malicious traffic into the MLPANN to train our

ANN, with results indicating that our ANN detected

99% of these input attacks.

Index terms- Networking, TCP/IP, Neural Networking,

Multilayer Perceptron, Intrusion Detection Systems

1. INTRODUCTION

Currently, computer systems are routinely hacked by

bots [4], viruses or other harmful entities, as

evidenced by much research on attack incidences and

their consequences. These attacks cause a loss of

billions of dollars worldwide annually. The

propagation of malware is always aided by unpatched

systems, or users who click on any link that

represents their mailbox. In the coming years, we will

witness a great explosion of internet access by other

devices such as televisions, cell phones and others

electronic devices. With internet commerce

becoming more common, it is expected that criminal

activity will increase.

Detecting attacks against computer systems is an

arduous task; it was better studied when Snort [2]

was developed and its source code was distributed.

Since then, many features of Snort have been

improved and other concepts have been incorporated.

The neural network (NN), also known as and referred

to herein as an artificial neural network (ANN), is a

viable alternative to detecting such attacks. In this

paper, we report our usage of the multi-layer

perceptron algorithm to detect three types of network

attacks and Snort to compare among these attacks.

[7].

This paper is divided into eight sections as follows:

Section 2 covers the basic concepts concerning the

three presented attack types; Section 3 explains the

multi-layer perceptron, and how we collected data to

input into our ANN; Section 4 covers how we trained

our ANN; Sections 5 and 6 detail how the algorithm

was implemented; Section 7 explains how the results

were obtained; and Section 8 presents the conclusion

of our research.

2 PRELIMINARY CONCEPTS

To collect the data that facilitated the training of our

NN, we chose three types of attacks:

Ping of death

This attack type sends a malicious or malformed

packet to a computer. Normally, a ping packet is 64

bytes long. In 1996, attackers began to take

advantage of the packet size feature when they

discovered that a packet broken down into fragments

could add up to more than the allotted 65,536 bytes.

Many operating systems were stymied upon

receiving an oversized packet, and thus froze,

crashed, or rebooted.

Although, sending a packet larger than 65.535 bytes

is illegal according the RFC 791[3], this bug is

relatively easy to exploit. The fragmentation method

is used to send a packet of such large size that when

the target computer reassembles this kind of packet, a

buffer overflow may occur. This exploitation affects

various systems, including UNIX, Linux, Mac,

Windows, and routers.

The solution for this situation is to check for each

incoming IP fragment, making sure that the sum of

the ‘Fragment Offset’ and ‘Total Length’ fields in the

IP header of each IP fragment is smaller than 65.535

bytes. If the sum is larger, then the fragment is

dropped or ignored. This check is performed by some

© May 2020 | IJIRT | Volume 6 Issue 12 | ISSN: 2349-6002

IJIRT 149535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 674

firewalls, to protect hosts that do not have the bug

fixed.

Brute Force Attacks on Port 22

The secure shell (SSH) service became the most

popular to access remote machines. It is easy to use,

as there are many clients available to any modern

operating system and, above all, the SSH has a strong

policy to authenticate users and to protect traffic data.

Moreover, SSH is the point used by hackers to gain

access to systems with weak policies on passwords,

whereby a false assurance is provided if the

administrators do not care about this kind of problem.

Despite the fact that SSH allows alternative ways to

authenticate remote access, it is possible to use a

certificate or simply type in the ‘user/ password’

phrases. Traditionally, the facility chooses and

configures the user/password phrase. However, weak

passwords are subject to guessing and to brute force

attacks. The strength of a password is a function of its

length, complexity, and randomness; to avoid

selecting a weak password the administrators must

work within these constraints. Users tend, however,

to choose relatively weak passwords for purposes of

easy memorization.

SCAN Xmas TREE

A common first step is recognizing the remote

operating system. A basic approach to this endeavor

uses a port scanner to send malformed packets to

target machines. There are various types of scanning,

including TCP Scanning, UDP Scanning, ACK

Scanning, and e-Window Scanning. According to the

answers received, the attacker draws their own

conclusion about open ports, kernel versions,

operating systems, and other information that is

necessary to initiate an attack.

The possible answers include:

 Open or Accepted: The host sent a reply

indicating that a service is listening on the port.

 Closed or Denied, or Not Listening: The host

sent a reply indicating that connections will be

denied to the port.

 Filtered, Dropped or Blocked: There was no

reply from the host.

The Xmas Tree Scan was first used in 1999, when the

computers could not handle packets with flags FIN,

URG and PUSH sets which caused Windows

Operating Systems to crash.

3 MULTI-LAYER PERCEPTRON

Neural Network Concepts

An ANN is a computing architecture inspired from

natural biological information processing

features.[5][6]

ANNs are made up of processing units connected by

communication channels that have multiplicative

gains (weights). A signal into an input is multiplied

by one weight and added to Detecting Attacks to

Computer Networks Using a Multi-layer other

signals, the total sum of which is applied to a

generally non-linear activation function to calculate

the output of each neuron.

The ANN can be used in interconnected layers, and

one of its more important properties is its intrinsic

learning capacity. During supervised learning,

examples of input-output pairs are presented to the

network that adapts its internal weights to

approximate the desired mapping.

The Multi-Layer Perceptron has at least one ‘hidden

layer’ of neurons, whose outputs are kept isolated and

not fed into other neurons. These hidden neurons do

not have, in principle a ‘desired output’ from

examples, but rather utilize a well-known

optimization technique known as the back

propagation rule, which allows weight adjustments to

occur.

No reliable rules exist to determine the number and

size of the hidden layers; this is usually accomplished

by trial-and-error, with the user trying to find the

smallest network that provides optimal performance.

Presentation of examples and weight correction

measures through the back-propagation algorithms

continue until a stop criterion is attained. Stop

criterion usually employ a target value for the mean-

square error over the training data.

Collecting Data

To train our neural network, the first task is to collect

data. An important concern in this phase is to present

unbiased data to the network. Data capture was done

using tcdump, a packet decoder installed in most

Unix and Linux systems. The normalization of these

data is necessary to input data to the ANN presented

© May 2020 | IJIRT | Volume 6 Issue 12 | ISSN: 2349-6002

IJIRT 149535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 675

herein, and was accomplished with a dnsi that

formats the fields shown in Table 1.

During normalization, the data are collected and we

try to input parameters as varied as possible so as not

to incur the mistake of letting our network

tendentious, and consequently harm the proof

concept. Various private IP addresses for classes A

(10.0.0.0/8), B(172.17.0.0/16) and C(192.168.0.0/16)

were used as input.

The fields used as input for our ANN correspond to

the fields in the tcpdump format:protocol, source IP

address, source port, destination IP address,

destination port, TCP flag, and packet length.

Table 1- Input Data in the Neural Network

Name DescriptioN moDificatioN

Protocol Define the Protocol :

tcP, UDP e icMP

WithoUt Modifications

SoUrce_iP ADDreSS of

SoUrceiP

converteD to logArithMic

ScAle

DeStinAtio

n_iP

ADDreSS of

DeStinAtion iP

converteD to logArithMic

ScAle

SoUrce_Por

t

SoUrce Port converteD to logArithMic

ScAle

DeStinAtio

n_Port

DeStinAtion Port converteD to logArithMic

ScAle

flAgS flAgS USeD bytcP

Protocol

WithoUt MoDificAtionS

length length of iP PAcket converteD to logArithMic

ScAle

The Nmap scanner [9] was used to genarate traffic.

Source and destination ports were varied randomly.

4 NETWORK TRAINING

Supervised training through the back propagation

algorithm has two main steps:

1. Data presentation and calculation of network

output.

2. Error calculation and weight changes according

to a gradient-descent technique for optimization:

Figure 1: Two steps of backpropagation algorithm

The data were arranged in two sets, as is usual in

ANN training. These sets included the training set,

containing 7,000 examples of traffic variables, both

for normal traffic and during an attack. Each example

is composed of seven variables (Table 1) and a

desired output (0 for normal traffic, 1 for attack). A

second set (the test set) is composed of 5,000 other

traffic variable examples that will not be used to

adapt the ANN weights, but only to evaluate its

performance and generalization capacity.

Initially, the archives were preprocessed for the

backpropagation algorithm used in the MLANN . In

this way, were created four archives in the Excel

format:

 Input Matrix - Training: 7,000 x 7 dimension

 Input Matrix - Validation: 5,000 x 7 dimension

Each input matrix has a desired output (class),

 and the preparation of these matrices is described

hereinafter:

 Output Matrix - Training: the output layer will

consist of one node, which is responsible for

warning of a network attack (output 1), or if the

network traffic is normal (output 0). Thus, the

output dimension will be 7,000 x 1.

File output Neural net output

0 normal traffic

1 net under attack

 Output Matrix - Validation: is the same

described procedure for the Output Matrix

 Training, described above, but the matrix

dimension will be of 5,000 x 1.

After the training of these archives, we will obtain

four matrices that will store the prepared values for

developing the ANN.

We used the MATLAB programming language to

develop the ANN, where the original files, previously

described were treated for the ANN's entry.

The logarithmic normalization procedure derives

values between 0 and 1. However, because the

trained ANN cannot assume this exact value range,

we modified the exit matrices range to be between

0.1 and 0.9, whereby an exit value of ‘1’ is changed

to 0.9, and that of ‘0’ becomes 0.1. The final

treatment of these files was accomplished in Excel.

5 DEVELOPMENT OF THE ALGORITHM IN

MATLAB LANGUAGE

© May 2020 | IJIRT | Volume 6 Issue 12 | ISSN: 2349-6002

IJIRT 149535 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 676

The ANN's architecture was defined as follows:

1. The Input Layer has seven responsible neurons

for receiving the input elements (patterns) of the

ANN;

2. The Output Layer has one neuron, responsible

for showing the response of the ANN;

3. The Hidden Layer was examined initially with

three neurons, but simulations were conducted

with four neurons.

Given seven input variables, the network output calls

for seven input neurons in the first layer, one hidden

layer whose size is varied after each training, and one

output layer with a single neuron, indicating the

network architecture

Figure 2: Weights Generated in the Backpropagation

Net

Detecting Attacks to Computer Networks Using a

Multi-layer

Therefore, we describe the ANN as the design above

(Table 2) with m=7 and one neuron in the exit and

the Hidden Layer neurons (initially three).

6 SIMULATIONS RESULTS

As stated previously, we initially examined the

hidden layer with three neurons obtaining the results

presented in tables 2 – 5.

Table 2 Learning rate equal 0.3 and 3 neurons in the

hidden layer

Learning

rate

Number of

epochs

Neurons in the

hidden layer

Training

error

Validation

error

0.3 100 3 0.1889 0.1932

0.3 300 3 0.0906 0.0892

0.3 500 3 0.0311 0.0372

0.3 700 3 0.0869 0.0956

7 CONCLUSIONS

The need for continuous improvements in device

security motivates new alternatives for identifying

computer network attacks. The use of ANNs for

implementing network security is an attractive

alternative to other common and less effective anti-

attack methods. Based on the signatures of Snort [2],

we established malicious packages for assembly of

the ANN training files. Our results indicated a 99%

success rate for recognizing potential attack code.

Commercial applications require supplementary input

parameters, such as a package timestamp and

package payload, among others. The diversification

of the examples is another factor to consider to

improve the training of the ANN. Nonetheless, we

consider our 99% success rate to be a highly

promising framework for developing future ANNs

against malicious traffic.

REFERENCES

[1] http://www.denunciar.org.br/twiki/bin/view/Safe

rNet/ Noticia20070704035010

[2] http://www.snort.org http://www.rfc.org

[3] B. Saha and A. Gairola. "Botnet: An Overivew".

CERT-In White Paper, CIWP-2005-05, June

2005

[4] Haykin S. - "Redes Neurais Princípios e

Práticas", Editora Bookman, 2001.

[5] Braga, A. P., Carvalho A. C. P. L. F. e Ludemir

T. B. - "Redes

[6] Neurais Artificiais", Editora LTC, 2000.

[7] ROCHA, D. L. - "Utilização de um ambiente de

honeynet no treinamento de redes neurais

artificiais para detecção de intrusão", ENE-FT

UnB, 2006.

[8] http://www.vmware.com

http://www.insecure.org/nmap.

Learning

rate

Number of

epochs

Neurons in the

hidden layer

Training

error

Validation

error

0.15 100 4 0.1066 0.1108

0.15 300 4 0.0766 0.0792

0.15 500 4 0.0686 0.0704

0.15 700 4 0.0683 0.0712

