
© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149715 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 396

Understanding the Cross-site Request Forgery

Vulnerability (CSRF) and Detecting CSRF vulnerability

using Python Script

Kherala Ankita A
1
M.Tech, School of Information Technology & Cyber Security, Raksha Shakti University

Abstract- In today’s world web applications are very

important for our daily routine and many other

activities are relay on the security of these web

applications. Due to lack of security most of web

applications are still vulnerable with the CSRF

vulnerability. Cross-site request forgery (CSRF/XSRF)

is vulnerability that is found in most of web

applications. Without the knowledge of user it can allow

an attacker that will perform unauthorized activities by

which an attacker can manipulate your private data,

Like if any user can send email to his colleague then the

vulnerable web application do the same thing. Still it is

hard to detect CSRF Vulnerability. In this paper we will

understand the vulnerability of CSRF and how to detect

CSRF Vulnerability in URL of web application using

Python Script.

Index terms- CSRF, CSRF Detection Tool, Python,

OWASP, Cyber Security

I.INTRODUCTION

Cross-site Request Forgery referred as CSRF/XSRF

is the OWASP top 10 listed vulnerability found in

most of web applications. CSRF is known as

“SLEEPING GIANT” of the web-based applications

vulnerability, just because of security missing in the

web development. CSRF is also named as Confused

Deputy Attack, Cross-site Reference Forgery, XSRF,

Sea Surf, One Click Attack and session riding.

Without any Expertise tool, it can be a challenge to

detect CSRF Vulnerability. It is considered as an

active application layer attack. As with the help of

new technologies, methods and tools the security of

internet is increasing with the high speed, still the

attackers find the vulnerability in the web

applications and exploit them to carry out attack

against servers and client.

The most dangerous attack today is accessing the

confidential information that is linked with users

account example: bank accounts, social media

accounts, email accounts which has most sensitive

information. Penetrating of these accounts may cause

harm to the users in which they can lose their data

and money. And this data is used by attackers to

perform malicious operations on the cyber world.

When user do any action on an internet like

registration or filling up the form , the users data is

sent on server by using GET or POST method of

HTTP Protocol.

The browser sends the data/request according to the

user’s cookie. The cookies i.e. Session identification

shows that how website store your privileges in your

web browser and identifies who are you. the attackers

taking advantage of this active session and send the

malicious link to the user and when user click on that

malicious link the CSRF attack happens on that

particular users web browser. Thus the problem is

that how to protect your active session that prevent

you data or secret information from stealing.

There are many program of software that are testing

the web applications that detects the security

vulnerabilities. This software program is known as

Security Scanners. There is branch of Information

Technology i.e. Web Application Security that

mainly deals with the security of the applications,

Servers, Web services. As vulnerability exposes are

growing daily, the developers also understand the

vulnerability present in their software. There is huge

problem in testing the software by hand, so there

needs to be an automated vulnerability scanner that

detects the web vulnerability by its own.

There are many different kinds of request forgery

attacks:

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149715 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 397

a. Man-In-The-Middle Attack: when an attacker

hijacks the request and act as a server for

forwarding request to actual server this can only

be avoidable using SSL.

b. JavaScript injection on the target site: If any

attacker implements JavaScript on the page, they

can perform every activity which the user can

perform on their system.

c. Browser-In-The-Middle Attack: The attacker

target the browser of the user, when user left the

machine after completing his/her work on the

machine browser. This vulnerability can permit

doing everything that the user can actually do in

their browser. This is done when users logs out.

d. Request forgery from another site: This is called

actual CSRF attack. It is also called CSRF

because it includes two sites to accomplish.

II. OVERVIEW OF CSRF ATTACK

CSRF attack is classified as pre-authentication and

post-authentication CSRF Attack. As post-

authentication CSRF is known from 2001, received

lot of attention from web community and pre-

authentication in not mentioned in OWASP Testing

Guide although many exploits have been reported.

The First CSRF attack was registered in 2001.

CSRF Attack is rarely known to developers and the

consider it as XSS attack and some of them consider

it as XSS Mitigations can work on this Attack. But it

is different from XSS attack and it requires different

methods and technique to detect this attack.

Lets take an example of CSRF attack, suppose an

user is logging into an bank account on website using

username and password, Server will validate the

authority to the user and will provide a session to

client. Attacker will send illegal request to attract

them to a fake link which is on other third party

untrusted server. Whenever use will click on that link

the CSRF attack will get started.

CSRF Attack can also exploit the authentication

mechanism of the targeted web applications. The

problem with this is that web authentication assures

request from site came from certain user’s browser,

actually it does not know that the request came from

is actual request or authorized the request.

If a server has CSRF vulnerability and accepts GET

request, then the CSRF attacks are possible without

use of JavaScript and if server is accepting POST

request then the JavaScript is required to send

automatic POST request from attacker’s application

to target application.

CSRF Attack can simulate valid requests, Active

XSS, SQL Injection and call web services in some

cases of CSRF attack.

Fig. 1. What happens in CSRF Attack?

A. CSRF attack at URL

In URL password changing happens something like

this. Example: Victims old password is rsu321. Now

if we change new password to abc321, if URL

contains following two factors: 1. Passwd-new =

abc321 2. Passwd-config = abc321 and are separated

by “&”. The attacker can operate the URL string by

Address bar or using CURL. There are many other

methods that can perform CSRF attack like

VBScript/ActionScript/JavaScript/HTML etc.

B. CSRF Classification

CSRF is the vulnerability in which an attacker can

perform unauthorized activities without the

knowledge of the user. This vulnerability is classified

in following:

1. Reflected CSRF: In reflected CSRF vulnerability

the attacker use a system outside the application to

expose the victim to exploit content.

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149715 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 398

2. Stored CSRF: Stored CSRF vulnerability is the

vulnerability where an attacker use application itself

for providing some content that directs the victims

browser back to the application. These vulnerability

are most likely to succeed.

C. CSRF Mitigation

There are number of methods, tools and techniques to

prevent the CSRF attacks. Some of the best way to

prevent the attacks are:

1 Secure your username and passwords.

2 Deny to remember the passwords in browser.

3 When applications not in use log off the

application.

III. SYSTEM

Day-to-day the number of vulnerability exposes is

increasing. The developers do not understand the

security vulnerability of their applications. For secure

coding and testing a dedicated person is required for

this and it’s not possible easily so, Here we need an

automated system that can detect the vulnerability for

the web applications which provide and speedy and

accurate result.

A. How today’s software system finds the CSRF?

CSRF is clear design flow vulnerability. Some

Address Security Specifications are omitted like in

password-reset CSRF Example, here” Only

Authenticated entity can reset their own password” is

missing specification. CSRF is mostly identified by

DAST (Dynamic Analysis Software Testing). But we

can still see the source code in which it is possible to

find weak design-patterns like Password-reset

example. But still the DAST or human source-code

reviews can not identify the CSRF vulnerability. It

seems like that DAST only scans the vulnerability in

following manners: 1. Scanner that ignores CSRF

Vulnerability. 2. Most users turn off the CSRF testing

specification or they have over emotional affection

with many more result they possibly can sort. 3. Try

to replay all non-idempotent request and all

successful replays as CSRF vulnerability.

Here we are going to create one python system that

will detect the CSRF vulnerability. So Let’s have

some basic introduction about python language.

B. Python

It is easy learning and powerful language used mostly

in today’s web applications. It is high-level data

structure language. We can learn more about python

from this link https://www.python.org/.

Here is the script that we are going to use for

detecting CSRF Vulnerability. There are some

parameters used in script for getting URL of the web

application and scanning the vulnerability.

Fig. 2. CSRF Token Python Script

Fig. 3. POST URL Pytohn Script

Fig.4. GET URL Python Script

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149715 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 399

IV. LITERATURE REVIEW

There are many system that provide protection

against CSRF attack, these solutions have different

methods. We have reviewed some literatures that

detect the CSRF vulnerability.

In “Efficient Web Vulnerability Detection Tool for

Sleeping Giant-Cross Site Request Forgery”, the

author parimala have explained about the CSRF

vulnerability and how to detect the CSRF

vulnerability using Python Script. In their research

they have made a tool that is web based and it detects

the vulnerability in very efficient way.

In “CSRFD tool: Automated Detection and

Prevention of a Reflected Cross-Site Request

Forgery”, author Omar Batarfi have mentioned about

the CSRF detection and how they prevent the CSRF

vulnerability using the CSRFDtool. We have

surveyed from these that we can detect amd also can

we prevent the CSRF vulnerability using Python

Script.

In “CSRF Vulnerabilities and Defensive Techniques”

by Rupali D. Kombade and Dr. B.B. Meshram they

have mentioned the CSRF vulnerability and the

techniques for preventing the CSRF attack. They

have mentioned actually how the HTTP GET and

POST method are using CSRF attack to be done.

They have compared the all other techniques with

their system.

In 2011 a paper titled “A Study of the Effectiveness

of CSRF Guard” has discussed one of the strategies

that has attempted to prevent and block CSRF attack.

The protection that the CSRF Guard has offered

against the CSRF attack deepened on the token

generation and validation.

V. RESULT & DISCUSSION

By testing this vulnerability detection tool we have

got the idea about how to test the vulnerability and

where to secure the code at development side. With

less number of verification, the detection tool detects

the vulnerability. Thus also we can develop a tool or

system that will further detect all other OWASP TOP

10 Vulnerabilities that will help developers to test

their applications.

VII. CONCLUSION

This paper thus concludes that Cross-Site Request

Forgery is vulnerability of OWASP top 10 and is

found in most web applications thus to detect that

vulnerability we can make a tool that can detect the

vulnerability. Only our main aim was to detect the

vulnerability using tool. Thus we can detect the

CSRF attack using python script that can help us lot

in many other vulnerability detection. CSRF is

OWASP top 10 Vulnerability which access the data

of users in an unauthorized way. So, this paper have

worked upon the Vulnerability, how it works and

how the flow goes and then after how to detect the

vulnerability using python script.

VIII. ACKNOWLEDGMENT

I would like to thanks our Professor Dr. Ravi Sheth

who guided me in my research work and also helped

me a lot and I would also like to thanks sir Falgun

Rathod who guided me at each and every step of my

work.

REFERENCES

[1] Omar A. Batarfi, Aisha M. Alshiky, Alaa A.

Almarzuki, Nora A. Farraj, “CSRFDtool:

Automated Detection and Prevention of a

Reflected Cross-Site Request Forgery”, 2014.

[2] Aung Khat, “A Most-Neglected Fact aboutCross

Site Request Forgery”, by YGN Ethical Hacker

Group, http://yehg.net, 2010.

[3] Vandana Dwivedi,, Himanshu Yadav and

Anurag Jain, “SQLAS: TOOL TO DETECT

AND PREVENTATTACKS IN PHP WEB

APPLICATIONS”, 2015.

[4] Avinash Sudhodanan, “Large-Scale Analysis &

Detection of Authentication Cross-Site Request

Forgeries”, 2017.

[5] Parimala G, “Efficient Web Vulnerability

Detection Tool for Sleeping Giant-Cross Site

Request Forgery”, National Conference on

Mathematical Techniques and its Applications

(NCMTA 18) IOP Publishing IOP Conf. Series:

Journal of Physics: Conf. Series 1000 (2018)

012125 doi :10.1088/1742-6596/1000/1/012125.

[6] Rupali D. Kombade, Dr. B.B. Meshram, “CSRF

Vulnerabilities and Defensive Techniques”, I. J.

Computer Network and Information Security,

2012, 1, 31-37 Published Online February 2012

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149715 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 400

in MECS (http://www.mecs-press.org/) DOI:

10.5815/ijcnis.2012.01.04.

[7] William Zeller and Edward W. Felten, “Cross-

Site Request Forgeries: Exploitation and

Prevention”, 2008.

[8] https://brochure.getpython.info/

[9] Sentamilselvan K, “Survey on Cross Site

Request Forgery (An Overview of CSRF) ”,

IEEE - International Conference on Research

and Development Prospects on Engineering and

Technology (ICRDPET 2013) March 29, 30 -

2013 Vol.5 ISBN: 978-1-4673-4948-2 © 2013

IEEE.

[10] Virginia Mary Nadar, Madhumita Chatterjee,

Leena Jacob, “Detection Model for CSRF and

Broken Authentication and Session Management

Attack”, Virginia Mary Nadar et al, / (IJCSIT)

International Journal of Computer Science and

Information Technologies, Vol. 7 (4) , 2016,

1801-1804.

[11] Shaikh, Roshan, Defending Cross Site Reference

Forgery (CSRF) Attacks on Contemporary Web

Applications Using a Bayesian Predictive Model

(March 1, 2013). Available at SSRN:

https://ssrn.com/abstract=2226954 or

http://dx.doi.org/10.2139/ssrn.2226954

[12] Jesse Burns, “Cross Site Request Forgery An

introduction to a common web application

weakness”, ©2007 Information Security Partners

LLC.

[13] Roshan Shaikh, “Defending Cross-Site Request

Forgery (CSRF) Attacks on Web Applications”,

2019.

[14] https://www.imperva.com/learn/application-

security/csrf-cross-site-request-forgery/

[15] http://buddie-hackersguide.blogspot.Com/2011/

04/what-is-cross-site-request-forgery.html

[16] https://www.whitehatsec.com/blog/whitehat-

securitys-approach-to-detecting-cross-site-

request-forgery-csrf/

[17] https://portswigger.net/web-security/csrf

