
© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 775

Root Cause Analysis of Broken Authentication and

Session Management

Jigar Patel
1
, Prof. Chandresh Parekh

2

1
Student, M.Tech, School of Information Technology & Cyber Security, Raksha Shakti University

2
Dean, School of Information Technology & Cyber Security, Raksha Shakti University

Abstract- While there are many ways to protect web

applications as one of the most common ways to harness

the power of the Internet, attackers almost daily come

up with new attempts to exploit various vulnerabilities

and undermine the information found on the net. One

of the possible areas for finding sustainable solutions is

to follow strategic approaches based on more detailed

analysis and understanding of problems than with some

common and practical approaches. The purpose of the

paper is to derive the function of cause analysis (RCA)

in session management and the weaknesses of the

validity of how it is used and how it is developed with

specific security features of web applications. Using

RCA, we were able to identify the specific causes of

uncontrolled session control and the specific causes of

the authentication

Index terms- Cyber Security; Web Application

Vulnerabilities; Exploitation Techniques; Broken

Authentication; Session Management

I.INTRODUCTION

Authentication and session management include all

aspects of true user management and effective time

management. This includes user authentication

management mostly done by username and password

and manage that session after authentication is

verified. Error handling both of these items may

result in stealing user or administrative accounts,

undermining authorization and accountability, and

resulting in breach of confidentiality. Due to

accessibility and session management many attacks

can be performed by the attacker. I will be describing

given two types of attacks:[a]brute force

attack.[b]session hijacking.[c]replay attack.[d]session

fixation.[e]session timeout.

II. BROKEN AUTHENTICATION AND SESSION

MANAGEMENT

Broken authentication is a type of web vulnerability

that occurs due to random session management. After

completing the authentication process, A session will

be created that will be used to communicate data

between the server and the specific user. If any

teenager can gain access to the active status of any

user that goes through the authentication process,

then that situation is treated as a breach of

Authentication broken application issue. The session

request is suggested by the web app user via the login

page where the user authentication is provided. When

a given request is sent from the client side to the

server side, the server launches a query to the test

data to determine whether the given user

authentication is matched to the data record. As soon

as the verification process is successful, a session

with a specific ID will be assigned to enable the user

to contact the request. The user can access the

program with the privileges granted to the system

administrator for accessing the unique resources. A

valid session is valid for a period specified by the

system builder. Browsers store user information in

the authentication cookie for the duration of the

session when the session expires by sending

authentication information to the server component.

This process is done automatically after a user

interface that will reduce the user's attempt to verify

that they are duplicated. However, an adversary may

seize and gain access to another applicable period of

time through different applications, such as, cookie

manager, ate my cookie, advanced cookie manager,

etc.

III. EXPLOITATION TECHNIQUE

[a]. Brute Force Attack

Brute Force attacks are a very bad option for those

with bad server access. The basis of this type of

attack is to eventually have root access to serve any

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 776

purpose the attacker may have. To do this, an attacker

often uses software trying to guess a password with

multiple failed login attempts. If there is no security

in place, these failed login attempts can continue until

they are properly guessed. Finding a website is at risk

of a severe attack. We can easily check whether the

site is at risk. It can be viewed manually. To check

the site's vulnerability, simply go to the site's login

page and also a specific username and try different

passwords. If the site does not ask for additional

information and allows you to try an additional

password this is a result of the fact that this website is

at risk of being attacked.

[b]. Session Hijacking

According to computer science, hijacking is the

exploitation of a valid computer session is sometimes

called session key to gain unauthorized access to

information or services on the computer system. In

particular, it is used to refer to stealing a magic

cookie that is used to authenticate a user on a remote

server. It directly affects web developers, since http

cookies are used to save time on many websites that

can easily be stolen by an attacker using a counselor

computer or access cookies stored on the victim's

computer.

[c]. Replay Attack

Duplicate attacks are a type of network attack where

the valid data transfer is malicious or duplicated. This

is done by the inventor or by the adversary who

divides the information and returns it, perhaps as part

of a secret attack by replacing a packet-like stream

attack.

[d]. Session Fixation

The timing correction attacks are trying to exploit a

system vulnerability that allows one person to set

another person's time identifier. Most session

correction attacks are web-based, and most rely on

the time identifier accepted in URLs (query line) or

postal data.

[e]. Session Timeout

The output structure specifies the timeout given in

the application session object, in minutes. If a user

does not refresh or request a page within the expiry

time, the time expires.

IV. DATA COLLECTION PROCEDURE

A hands-on approach was used following the double

blind strategy of conducting the Study. Small sample

techniques were also selected to determine the

sample size of this study. Various manipulation

methods for authentication of the request where the

session control problem was used in this study. To

demonstrate the feasibility (i.e. broken authenticity

and weaknesses of temporary control) the use of the

public and private sectors, is searched at

http://www.google.com/ using several operators. The

most effective of our tests i.e

Inurl:apanel/admin/index.php,

inurl:news.php?id=,Inurl:gallery.php?id=,

inurl:article.php?id=, and

Inurl:event.php?id=.

After accessing our sensitive web applications, it will

be exploited using the unique authentication method

and session management exploitation described

above and find that the vulnerability types are

provided in this application. The level of access after

abuse has been identified in this study.

Environment & ToolsHydra tool has been used for

brute force attack to cracking the weak password.

Mozilla Firefox version 54.0 has been used to stop

java script re-direction. No redirection plugins

version 1.3.2.13.1 and is switch 0.2.10.1 add-ons

have also been used.

V. PREVENTION

Basic guidelines to manage the session are provided

below for preventing the given types of exploitation.

It is to be noted that all the solution examples are

given in php code.

[a]. Session id life cycle

Session ids can be generated in two types i.e.

permissive And strict. The default method initially

accepts any amount of id time set by the user to

create a new session. In contrast, the robust process

forces the web application to accept the values of the

time ids generated by the program. If web

applications are unsure and filter incorrect id values

before processing, then an attacker may be used to

exploit other web vulnerabilities. The session id must

be renewed or renewed even if the same user is

upgrading / downgrading their users.

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 777

[b]. Session reset

A defined session is created during an authorized

user session you are logged in. The system saves

authentication cookies for user authentication during

their active session. These Session cookies must be

reset after the user exits the system to ensure privacy.

After the user logs out, the module should complete

the following types of code

.If (isset($_request['logout']))

{

Unset($_session[logout])

}

[c]. Session expiration

Sessions hijacking is one of the types of attack by

which an attacker can exploit over an active session.

Therefore, it is necessary for the developer of the

web application to set expiration timeouts for every

session to prevent sessions hijacking attacks. The

developer should also ensure the mechanism to keep

the session active as long as the valid user remains in

work. Irregular session Expiration increases different

types of session-based attacks as the attacker could

reuse the valid session ids and also can hijack the

active associated sessions. Example of cookie

expiration is shown as below:

Set-cookie: id=; expires=friday,-15- july-19.

[d]. Cookies

Cookies based session id exchange mechanism

ensures Numerous security properties in the form of

cookie attributes which it can be used to safeguard

the exchange of the session id.

[e]. Session attacks detection

When an attacker tries to guess/ brute force a valid

session id or analyze the predictability of the session

id using statistical analysis, multiple sequential

requests against the target web application has to be

launched using different session ids from a single or

multiple ip addresses. Web application’s firewall has

to have the capability to detect the above scenario

based on the number of attempts that the system

observed from different session ids. Alert to the

Administrator has to be ensured and block those

offending ip addresses by analyzing the payload.

[f]. Client-side defenses for session management

Web application's session maintenance technique

using Java-script validation for client site protection

is a regular way to make it safe from general users.

Although it is not enough for defending any skilled

intruder, but it may generate another layer of

security. Attacker can bypass this client site

protection using some advance tool (e.g. burp suite

and techniques. Therefore, the server side security

needs to be address properly. The confidential pages

must use the defined system session strictly for being

secure from unauthorized access. Proper session

maintenance is the main key point of reducing broken

authentication vulnerability. Insecure sessions are

generally compromised by the attackers for

interrupting in General session mechanism. In this

case, developers need to meet some initiatives which

are described below for proper management of

sessions.

I) predefined session period:

Session should be started with the proper validation

of user's credentials i.e. username and password. The

session cookie will be used to authenticate the user

continually as long as the user stays active in the

system. If the user found without any activity for a

certain period, the session will be destroyed

automatically by the system. Sample of the automatic

session destroy code is given below:

If (isset($_session['activity']) && (time() -

$_session['activity'] > 1200)) {

// here previous request was 20 min ago

Session_unset(); //session_destroy(); // destroying

active sessions} $_session['activity'] = time(); // now

updating last activity from the above code, it is

observed that the system will destroyed the active

session once it finds the user inactive for 1200

seconds.

II) destroy old sessions:

The system should not allow long duration session

without proper authentication for ensuring users

validity. The following types of code may help the

developer to prevent session based attack.

If(!empty($_session['deleted_time'])&&$_session['de

leted_time'] < time() - 180) {Session_destroy(); //

delete the old sessions

III) set cache limitation as private:

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 778

The cache expiration is reset to the default value of

180 stored in the function of session.cache expire

during request startup time. Thus, the developer

should ensure to call the function,

session_cache_expire() for every request to define

Every cache limit as private. Example of sample

solution code is given below:

/* set the cache limiter to 'private' */

Session_cache_limiter('private');

$cache_limiter = session_cache_limiter();

[g]. Generating an access token:

Use of access token for entering into any active

session is now very popular for web applications.

When a user requests for creating a new session after

completing the authentication process, the system

generates an access token randomly to Validate the

user. Users have to enter the given token code with

their credential to get access into their session. Since

the token code are generated randomly for a limited

time period, an attacker cannot hijack the user’s

sessions using brute-force Technique even if the

attacker discovers the correct user credential.

VI. CONCLUSION

Virtually all web applications maintain a user profile

separately to ensure quality and communication

services to their user. Authentication and temporary

management problem are one of the biggest obstacles

to ensuring web app privacy. Therefore, the above

weaknesses have been listed as the weakest web

application since 2007 and are now ranked 2nd in the

open web application security project (OWASP). It

has been observed after conducting this experiment

that the presence of a validation problem and a

session management problem are found mostly in

educational institutions and on the government's

website. It is also revealed in this case that improper

session-time attacks and fragmentation / guessing of

weak passwords are the most effective ways to

exploit the broken authenticity and risk of web

application control over those domains. This study

has identified five forms of exploitation and has been

explored on Bangistani websites. Our perception that

the risk of exploitation discussed will be reduced if

the developer follows the security measures

described in this paper. In the future, we intend to

work on other forms of exploitation and investigate

other websites in terms of gaining the authenticity of

failures and session management.

ACKNOWLEDGMENT

I am Thankful To Mr. Chandresh Parekh For Guiding

in My Research Work.

REFERENCES

[1] "world internet users statistics and 2017 world

population stats",

internetworldstats.com,2017.[online].available:ht

tp://www.internetworldstats.com/stats.htm.

[accessed: 31- oct- 2017].

[2] "usage statistics and market share of server-side

programming languages for websites, november

2017", w3techs.com, 2017.

[online].available:https://w3techs.com/technolog

ies/overview/programming_language/all.

[accessed: 17- july-2017].

[3] J. Thome, l. K. Shar, d. Bianculli, and l. Briand,

"security slicing for auditing common injection

vulnerabilities," 2017, journal of systems and

software.,to be published.

[4] I. Hydara, a. B. M. Sultan, h. Zulzalil, and n.

Admodisastro, " current state of research on

cross-site scripting (xss)–a systematic literature

review, " 2015 information and software

technology, pp. 170-186.

[5] A. Z. M. Saleh, n. A. Rozali, a. G. Buja, k. A.

Jalil, f. H. M. Ali and t. F. A. Rahman, “a

method for web application vulnerabilities

detection by using boyer-moore string matching

algorithm,” 2015 procedia computer science,

pp.112-121.8

[6] A. Begum, m. M. Hassan, t. Bhuiyan and m. H.

Sharif, "rfi and sqli based local file inclusion

vulnerabilities in web applications of

bangladesh," 2016 international workshop on

computational intelligence (iwci), dhaka, 2016,

pp. 21-25.

[7] N. Nikiforakis, l. Invernizzi, a. Kapravelos, s.

Van acker, w. Joosen,c. Kruegel, f. Piessens & g.

Vigna, "you are what you include: largescale

evaluation of remote javascript inclusions, "

2012 in proc. Of acm conf. On computer and

communications security., pp. 736-747

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 779

[8] M. I. Ahmed, m. M. Hassan, t. Bhuyian, "local

file disclosure vulnerability: a case study on the

web applications of public sector, 10th

international conference on computer and

electrical engineering (iccee 2017) ", edmonton,

canada, october 2017,11-13,

[9] Zone-h.org, 2017. [online]. Available:

http://zone-h.org/?zh=1.[accessed: 11- aug-

2017].

[10] P. V. Ami and s. C. Malavy, "top five dangerous

security risks over web application" 2013

international journal of emerging trends &

technology in computer science, 2(1), 41-43.

[11] T.petsios, v. P.kemerlis, m.polychronakis and a.

D.keromytis, "dynaguard: armoring canary-

based protections against brute-force attacks, " in

proc. 31st annu. Computer security applications

conference, 2015, pp. 351-360.

[12] N.kaaniche and m.laurent, "data security and

privacy preservation in cloud storage

environments based on cryptographic

mechanisms," 2017 computer communications,

pp.120-141.

[13] R. Johari and p. Sharma, "a survey on web

application vulnerabilities (sqlia, xss)

exploitation and security engine for sql

injection," 2012 international conference on

communication systems and network

technologies, 2012, rajkot, pp. 453-458.h.

[14] A.torkamanatashzar, m. Bahrololum and m. H.

Tadayon, "a survey on web application

vulnerabilities and countermeasures,"6th

international conf. On computer sciences and

convergence information technology

(iccit),seogwipo, 2011, pp. 647-652.

[15] G.deepa and p. S.thilagam, "securing web

applications from injection and logic

vulnerabilities: approaches and challenges, "

2016 information and software technology, 74,

160-180.

[16] B. Rexha, a. Halili, k. Rrmoku and d. Imeraj,

"impact of secure programming on web

application vulnerabilities," 2015 ieee

international conference on computer graphics,

vision and information security (cgvis),

bhubaneswar, 2015, pp. 61-66.

