
© October 2020| IJIRT | Volume 7 Issue 5 | ISSN: 2349-6002 

IJIRT 150368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 84 

 

Software Testing Techniques: A Literature Review 

 

 

Neha Sharma1, Dr. Shilpi Singh2 

1Research Scholar, Dept. of Computer Science & Engineering, National Institute of Technology Patna  
2Asst. Prof., Dept. of Computer Science & Engineering, Amity University Patna 

 

Abstract - With the growing complexity of today’s 

software applications injunction with the increasing 

competitive pressure has pushed the quality assurance of 

developed software towards new heights. Software 

testing is an inevitable part of the Software Development 

Lifecycle and keeping in line with its criticality in the pre 

and post development process makes it something that 

should be catered with enhanced and efficient 

methodologies and techniques. This paper aims to 

discuss the existing as well as improved testing 

techniques for the better-quality assurance purposes. 

Index Terms - Testing Methodologies, Software Testing 

Life Cycle, Testing Frameworks, Automation Testing, 

Test Driven Development, Test optimisation, Quality 

Metrics 

I.INTRODUCTION 

 

Testing is characterized as a cycle of assessment that 

either the framework meets its initially indicated 

necessities or not. It is principally a cycle 

incorporating approval and check measure that 

whether the created framework meets the prerequisites 

characterized by client. Consequently, this action 

brings about a distinction among genuine and 

anticipated outcome. Programming Testing alludes to 

discovering bugs, mistakes or missing necessities in 

the created framework or programming. Thus, this is 

an examination that furnishes the partners with the 

specific information about the nature of the item.  

Programming Testing can likewise be considered as a 

danger-based action. The significant thing during 

testing measure the product analysers must 

comprehend that how to limit countless tests into 

sensible tests set, and settle on insightful choices about 

the dangers that are critical to test or what are not [1].  

Figure 1 shows the testing cost and blunders found a 

relationship. The Figure 1 obviously shows that cost 

goes up significantly in testing the two kinds for 

example utilitarian and non-functional. The dynamic 

for what to test or decrease tests then it can cause to 

miss numerous bugs. The successful testing objective 

is to do that ideal measure of tests so additional testing 

exertion can be limited [1].  

As per Figure 1, Software testing is a significant 

segment of programming quality confirmation. The 

significance of testing can be considered from life-

basic programming (e.g., flight control) testing which 

can be exceptionally costly due to chance with respect 

to plan delays, cost invades, or out and out scratch-off 

[2], and more about this [3][4]. 

 
Figure 1: Every Software Project has optimal test 

effort (Courtesy [1]) 

Testing has certain levels and steps as indicated by 

which the individual who does the testing contrasts 

from level to level. The three essential strides in the 

product testing are Unit trying, Integration testing and 

System testing. Every one of these means is either tried 

by the product designer or the quality confirmation 

engineer who is otherwise called a product analyzer 

[5]. The testing referenced above advances is 

comprehensive in the Software Development 

Lifecycle (SDLC). It is basic to break the product 

advancement into a lot of modules where every 

module allotted to an alternate group or diverse 

person. After the finish of every module or unit, it is 

tried by the designer just to check whether the created 

module is working by the desire or not, this is named 

as Unit Testing. The second step of testing inside the 



© October 2020| IJIRT | Volume 7 Issue 5 | ISSN: 2349-6002 

IJIRT 150368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 85 

 

SDLC is Integration Testing. When the modules of a 

solitary programming framework have been grown 

freely, they are incorporated together and regularly 

blunders emerge in the construct once the coordination 

has been finished. The last testing step in the SDLC is 

System Testing, which is trying of the entire 

programming from every single viewpoint. Likewise, 

programming testing guarantees that the coordinated 

units don’t meddle or upset the programming of some 

other module. Notwithstanding, testing of a huge or 

strongly complex frameworks may be a very tedious 

and extensive methodology as the more segments 

inside the application, the more troublesome it gets the 

chance to test every blend and situation, subsequently 

driving towards a desperate requirement for upgraded 

programming testing measure for premium 

streamlining [6].  

Testing cycle is basically made out of a few stages, 

from Test Planning to the examination of Test Results. 

Test Planning being the principal stage is chiefly the 

arrangement of all the test exercises that are to be led 

in the entire testing measure. Test Development is the 

second period of the testing life cycle, where the 

experiments that are to be utilized in the testing cycle 

are created. Test execution is the following period of 

the Testing cycle that includes the execution of the 

tests cases, and the applicable bugs are accounted for 

in the following stage that is the Test Reporting stage. 

Test outcome Analysis is the last phase of the testing 

cycle in which the deformity examination is finished 

by the designer who built up the framework or the 

product, this progression can likewise be taken care of 

alongside the customer as it will help in the better 

comprehension of what to overlook and what precisely 

to fix or upgrade or just change [7]. 

 

II. EXISTING TESTING METHODS 

 

For the initiation of the Testing cycle, the initial step 

is to create experiments. The experiments are created 

utilizing different testing strategies, for the successful 

and exact testing. The significant testing procedures 

are Black box testing, White Box testing and Gray Box 

testing [8].  

White Box testing is altogether powerful as it is the 

technique for testing that tests the usefulness of the 

product as well as tests the inward structure of the 

application. While planning the experiments to lead 

white box testing, programming aptitudes are essential 

to plan the experiments. White box testing is likewise 

called clear box or glass box testing. This sort of 

testing can be applied to all levels including unit, 

coordination or framework testing. This sort of testing 

is additionally considered Security Testing that is it 

satisfies the need to decide if the data frameworks 

ensure information and keeps up the expected 

usefulness. As this sort of testing measure utilizes the 

inward coherent course of action of the product 

subsequently it is fit enough of testing all the 

autonomous ways of a module, each intelligent choice 

is worked out, all circles are checked at every limit 

level, and interior information structures are 

additionally worked out. Be that as it may, white box 

testing fills a need for being a perplexing testing 

measure because of the incorporation of programming 

aptitudes in the testing cycle [9][10].  

Discovery testing is a trying method that basically 

tests the usefulness of the application without going 

into its usage level detail. This method can be applied 

to each degree of testing inside the SDLC. It 

predominantly executes the testing so that it covers 

every single usefulness of the application to decide if 

it meets the at first determined prerequisites of the 

client or not. It is fit for finding inaccurate 

functionalities by testing their usefulness at every 

base, greatest and base case esteem. It is the most 

straightforward and far and wide testing measure 

utilized overall [9] [10]. 

 
Figure 2: Software Testing Techniques [8] 

Grey Box Testing is the combination of the White Box 

and Black Box Testing Technique serving the 

advantages of both. The need for such kind of testing 



© October 2020| IJIRT | Volume 7 Issue 5 | ISSN: 2349-6002 

IJIRT 150368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 86 

 

aroused because in this type of testing the tester is 

aware of the internal structure of the application, hence 

testing the functionality in a better way taking the 

internal structure of the application into consideration. 

Figure 2 is referenced from author J. Irena [8] and 

further extended here in our research paper.   

 

A. Software Testing Life Cycle (STLC)  

Figure 3 discusses the STLC steps, stages and phases 

a software undergo during the testing process. Though, 

there is no fixed standard of the software or application 

undergoing STLC, and it varies from region to region 

throughout the world [11]. 

 
Figure 3: Software Testing Life Cycle [12] 

During the main period of the STLC, the survey of the 

product prerequisites happens by the Quality 

Assurance group in which they comprehend the center 

necessities as indicated by which the test will be 

directed. On the off chance that on account of any 

contention emerges, the group must organize with the 

advancement group to all the more likely comprehend 

and resolve the contention. Test arranging is the 

second and most significant period of the STLC, as 

this the progression where all the testing system is 

characterized. This stage manages the arrangement of 

the test plan, which will be a definitive deliverable of 

this stage. Test Plan is an obligatory record one-sided 

towards the utilitarian testing of the application, 

without which the testing cycle is beyond the realm of 

imagination [11].  

Test planning stage is where the experiment is created, 

and the test arranging action is stopped. Suitable Test 

cases are composed by the QA group physically or 

sometimes, mechanized experiments are created. 

Experiment indicates a lot of test information sources 

or information, execution conditions, and anticipated 

outcomes. The predefined set of test information ought 

to be picked with the end goal that it produces 

expected outcome just as purposefully incorrect 

information that will create a blunder during the test. 

This is normally done to check what conditions the 

application stops to perform [11].  

Test Execution Phase is involved execution of the 

experiment’s dependent on the test plan that was 

delivered before the execution stage. In the event that 

the usefulness passes the execution stage with no bug 

reportage, the test is supposed to be cleared or 

finished, and each bombed experiment will be related 

with the discovered bug or blunder. The deliverable of 

such movement is imperfection or Bug report.  

Test Reporting is the revealing of the produced 

outcomes after the execution of the experiments which 

additionally includes bug detailing which at that point 

sent to the advancement group, so it tends to be fixed 

[11]. 

 

B. Software Release Life Cycle  

This life cycle emerges after the STLC and it 

encompasses further testing process in which Alpha 

and Beta testing are inclusive.  

Alpha Testing, in which Alpha refers to the first stage 

testing of the application at the developer's end, can be 

done via white box technique or grey box technique. 

The testing at either integration or system level testing 

could be done using black box approach, which is 

termed as an alpha release. The alpha testing ceases 

with a feature freeze, which typically means no more 

feature will be added to either extend the functionality 

or for any other purpose [13][14].  

Beta Testing phase comes after Alpha testing and can 

be considered as a formal acceptance testing as it is 

done by the user, after the Alpha release. The software 

or the application is released to a certain intended 

group of users for the testing purpose. Usually, the 

beta version of the applications is made available to 

the targeted audience for feedback before it gets 

officially released. The targeted audience is often 

called Beta Testers, and the application may be termed 

as a prototype version of the software mainly for 

demonstration purposes. Hence, the final version of 

the software gets released after the Beta Testing [15] 

[16]. 

 

III. ENHANCEMENT IN TESTING PROCESSES 

 

Test Suite Prioritization does upgrade in the testing 

cycle by Combinational Criteria. The significant 

procedure behind such experiment organizing is the 

transformation of the weblogs into the test suites 

important with the client meeting, and further 

recording it into a XML design. The Algorithm 



© October 2020| IJIRT | Volume 7 Issue 5 | ISSN: 2349-6002 

IJIRT 150368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 87 

 

utilized for this methodology ought to be precisely 

organized by the inclusion dependent on 

combinatorial test suites. Also, observational 

investigations ought to be completed for examining 

the adequacy of the particular application and its 

pertinent test suites [17]. A device utilized in such 

manner is known as C-PUT which basically arranges 

the logs of the web applications into test suites which 

are designed in XML; it is then utilized for the 

arrangement of the usefulness for the prioritization of 

these tests. There is a continuous exploration about if 

these test suite prioritization strategies can be utilized 

to upgrade the shortcoming discovery proportion or 

not [18] [19]. The use of hereditary calculations (GAs) 

with the end goal of robotized test information age for 

testing the application is one more upgrade in the 

testing cycle, as already the dynamic methods for test 

information age stayed a major issue in the product 

testing measure, so the use of Genetic Algorithm based 

testing is a compelling of the test information age, it 

likewise fit for taking care of the information age 

keeping in accordance with the intricacy of program 

[20].  

 

A. Test Automation  

The significant improvement in the testing cycle 

drives the testing cycle towards the Test Automation, 

which is the utilization of specific programming to do 

the testing cycle just as it makes the examination of 

real outcomes with the normal outcomes. Test 

Automation strategy is time successful, as it spares the 

hour of manual testing which can be very relentless.  

In SDLC, Test Automation happens during the usage 

just as the testing stage. All through the world, Test 

Automation is being drilled rather than manual testing 

as it spares a lot of time achieving the testing measures 

in shorter time length. Test robotization has assumed 

control over the manual testing measure by 

diminishing its need just as by uncovering the measure 

of mistakes, shortages that cannot be recognized 

through the manual testing measure.  

Relapse Testing being one of the significant testing 

types requires a lot of time when done physically. It 

normally tests whether the product or the application 

works appropriately after the obsession of any bugs or 

blunders. Since some of the time after the blunder 

obsession, the code or application's mistake or bug 

proportion gets much higher. Thus, for the evasion of 

the time taken for relapse testing; a lot of robotized test 

suites is made to frame a relapse test suite for such 

reason. Test Automation additionally helps in finding 

the issue at a lot prior stage, sparing loads of change 

cost and vitality at later stages [21].  

Nature which provides food a term commonly realizes 

the mechanization testing execution called Testing 

Framework. The testing structure is fundamentally 

answerable for executing the tests, just as 

characterizing the arrangement in which to 

communicate desires and for the detailing of the 

outcomes. The champion component of Testing 

Framework that makes it broadly relevant in different 

areas overall is its application independency [21]. 

Testing Frameworks are of specific sorts, including 

Modular, Data Driven, Keyword Driven and Hybrid. 

The Modular Testing Framework depends on the rule 

of deliberation which includes the formation of 

various contents for various modules of the product or 

application that will be tried, in this way abstracting 

every single part from another level. This Modular 

division prompts the adaptability just as simpler 

support of the mechanized test suites. Likewise, when 

the usefulness is accessible in the library, the 

formation of various driver contents for various sorts 

of tests turns out to be simple and quick. The 

significant con of such kind of system is to implant 

information inside them, so when the adjustment or up 

degree is essential in the test information, the entire 

code of the test content needs to get changed. It was 

the significant reason that filled in as a reason for the 

creation of the Data Driven Testing Framework. In this 

sort of Framework, the test information and the normal 

outcomes are unmistakably put away inside various 

records, helping in the execution of single driver 

content having the option to execute all the 

experiments with numerous arrangements of 

information. This sort of Framework lessens the 

quantity of test contents just as limits the measure of 

code wanted for the age of experiments, gives greater 

adaptability in obsession of blunders or bugs.  

Catchphrase driven testing Framework uses obvious 

watchwords which are named as Directives. Such sort 

of structure is utilized to clarify the activities that are 

relied upon to be performed by the product or 

application that will be tried. This sort of testing is a 

fundamentally expansion of Data Driven Testing as 

the information just as the orders are kept in 

independent information documents. It envelops all 

favorable circumstances of the information driven 



© October 2020| IJIRT | Volume 7 Issue 5 | ISSN: 2349-6002 

IJIRT 150368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 88 

 

testing system. Additionally, reusability of the 

catchphrases is another significant preferred position. 

The evil factor of this sort of testing structure is that 

because of the use of catchphrases, it adds 

unpredictability to the system making experiments 

longer and more intricate. Subsequently, to 

consolidate the qualities of all structures alleviating 

the evil components being controlled by them. A cross 

breed approach is viewed as best for the use as it is 

fundamentally a blend of the apparent multitude of 

three methodologies and this mix coordinates the 

upsides of all the testing systems, making it the most 

proficient one.  

 

B. Testing Frameworks in the Agile  

The coordinated lifecycle is another advancement in 

programming testing as it envelops short and quick 

test cycles with much of the time changing necessities. 

In this manner, the lithe condition can include any 

testing structure, yet because of the continuous cycles 

and quick change in determined prerequisites, it 

support of test computerization suite turns out to be 

very troublesome. Despite the fact that testing 

structures stays a terrible fit for the dexterous 

condition in light of the fact that accomplishing most 

extreme code and usefulness inclusion stays 

troublesome in it.  

 

C. Test Driven Development (TDD)  

It is a procedure that utilizes mechanized unit tests to 

drive the plan of programming and compelling the 

decoupling cycle of the conditions. With the standard 

testing measure, analyzer regularly discovers at least 

one imperfections or blunders, yet TDD gives a 

completely clear proportion of achievement when the 

test does not bomb anymore, upgrading the certainty 

level about the framework meeting its center 

particulars. Utilizing the TDD approach a lot of time 

can be spare that may get squandered over the 

troubleshooting cycle [21].  

BDD (Behavior Driven Development) is essentially an 

augmentation of Test-driven Development zeroing in 

on the social parts of the framework as opposed to the 

usage level viewpoints. Thus, giving an away from of 

what precisely the framework should do giving more 

productivity to the testing cycle. Consequently, BDD 

is for the most part Test-driven Development 

consolidated with Acceptance testing, which 

commonly alludes to directing a test to decide whether 

the predefined necessity of the item or programming 

is met or not. On the off chance that it is performed by 

the expected client or client, at that point it is named 

as User Acceptance Testing [22]. 

 

IV. TESTING METRICS 

 

A. Prioritization Metrics  

The use of Test Metrics has prime noteworthiness as 

they can gigantically improve the adequacy of the 

testing cycle. They fill in as a significant pointer of the 

proficiency and accuracy and investigation of 

characterized measurements. They can likewise help 

in the recognizable proof of the zones which require 

improvement alongside ensuing activity or step that 

should be taken to dispense with it. Test Metrics are a 

solitary advance in STLC as well as goes about as an 

umbrella for the consistent improvement of the entire 

testing measure itself [23] [24].Software Testing 

Metrics center around the quality aspects pertinent to 

the cycle and item and are arranged into Process 

Quality Metrics, and Product Quality Metrics both of 

impulses plan to give upgrades in the testing cycle as 

well as in the item quality.  

In any case, there lays a basic issue looked by the 

current testing measure which is coordinating of the 

testing approach with the application being created. 

Only one out of every odd testing approach can be 

actualized in each application to be created. For 

instance testing of an organization convention 

programming as contrasted and the testing of certain 

web based business application will be very 

extraordinary with totally unique experiments 

unpredictability, and that plots the criticality of human 

association inside the testing cycle and not simply 

simple dependence on the current test cases. 

Prioritisation Metrics incorporate the length of the test 

dependent on some HTTP demands inside an 

experiment. Recurrence based prioritization upgrades 

the testing cycle with the end goal that the experiments 

that incorporates most utilized pages are, chose for 

execution before those experiments that use less 

continuous ones [25][26].  

 

B. Cycle Quality Metrics  

A cycle is the most prominent part as it is equipped for 

creating a quality result inside minimal time in the 

most savvy way. This is a definitive explanation that 

why associations all through the world have put their 



© October 2020| IJIRT | Volume 7 Issue 5 | ISSN: 2349-6002 

IJIRT 150368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 89 

 

emphasis on the improvement of the cycles execution, 

and this precisely where the requirement for the 

measurements developed, as it is needed to check the 

cycle from different measurements productively. 

Estimating Efficiency of the cycle is the key 

measurement of cycle quality which includes certain 

estimations of components like Test progress Curve 

which portrays the arranged advancement of the 

Testing Phase by the test plan [27][28].  

The expense of Testing is the following significant 

advance of the metric both stage insightful and 

segment savvy. The significant target of which is to 

help in recognizing the parts that require escalated 

testing and cost that they will bear as per it. Normal 

Defect Turnaround Time is another metric which 

portrays normal confirmation time by the testing group 

for the check of the imperfections. Normal Defect 

Response Time is the metric that is a pointer of the 

operational proficiency. It is the proportion of normal 

time taken by the group for reacting to the mistakes. 

Measurements for Process Effectiveness guarantees 

that the came about application or items will yield a 

great yield. Test inclusion, Defect Removal 

Efficiency, Requirement Volatility Index, fizzled and 

executed experiments being significant classes of it 

guaranteeing a general upgraded Testing Process.  

Likewise, the utilization of RTM (Requirement 

Traceability Matrix) can bring about improved Testing 

Process, as it maps each experiment with indicates 

prerequisite, making the testing more precise [23] 

[24]. 

V. CONCLUSION AND FUTURE WORK 

 

Testing is the most basic aspect of the Software 

Development Lifecycle, as it is something whereupon 

the last conveyance of the item is needy. It is tedious 

and a serious cycle, subsequently, improved 

procedures and inventive techniques are essential. 

This makes Automated Testing and different Test 

Metrics execution previously and during the testing 

cycle. It can improve the current testing strategies, 

both for time adequacy just as for effective and 

dependable last item which meets the predefined 

prerequisites as well as furnishes with most extreme 

operational productivity.  

The stage over which the product improvement and 

testing dwell keeps on advancing and remains 

incredibly famous. Notwithstanding, something so 

significant and basic like Testing comes frequently 

very late during the time spent Software Development. 

There ought to be a greatest collaboration between 

determination journalists and Testers for better 

understanding and early survey, which may fix 

equivocalness issues and thusly bring about sparing 

the expense of later fixing of the product. Analyzers 

after being clear about the determinations and 

prerequisites should hand over engineers a specific 

lightweight test model, so they ensure the essential 

particular are met before dealing with the venture for 

legitimate testing. Utilization of reenactment devices 

can gigantically help the analyzers in making the 

comparative condition where the item is bound to run, 

certain special case testing and strategies for the 

exemption taking care of can be best decided. While 

testing the item in the comparative testing condition 

for which the item is intended for, and that can be 

effectively done by incorporating the recreation inside 

the Testing cycle. Consequently, the future work in 

importance with the testing cycle will be substantially 

more innovation subordinate saddling the reenactment 

and computerized testing model based methodology, 

speeding up the testing life cycle as well as giving 

ideal bug counteraction and effective quality 

confirmation. 

REFERENCE 

 

[1] P. Ron. Software testing. Vol. 2. Indianapolis: 

Sam’s, 2001.  

[2] S. Amland, "Risk-based testing:" Journal of 

Systems and Software, vol. 53, no. 3, pp. 287–

295, Sep. 2000.  

[3] Redmill and Felix, “Theory and Practice of Risk-

based Testing”, Software Testing, Verification 

and Reliability, Vol. 15, No. 1, March 2005.  

[4] B. Agarwal et al., “Software engineering and 

testing”. Jones & Bartlett Learning, 2010.  

[5] K. Bogdan. “Automated software test data 

generation”. Software Engineering, IEEE 

Transactions on 16.8 (1990): 870-879.   

[6] Jacobson et al. The unified software development 

process. Vol. 1. Reading: Addison-Wesley, 1999.   

[7] Everett et al., “Software testing: testing across the 

entire software development life cycle”. John 

Wiley & Sons, 2007.   

[8] J.Irena. “Software Testing Methods and 

Techniques”, 2008, pp. 30-35.  

[9] Guide to the Software Engineering Body of 

Knowledge, Swebok, A project of the IEEE 



© October 2020| IJIRT | Volume 7 Issue 5 | ISSN: 2349-6002 

IJIRT 150368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 90 

 

Computer Society Professional Practices 

Committee, 2004.  

[10] E. F. Miller, “Introduction to Software Testing 

Technology”, Software Testing & Validation 

Techniques, IEEE, 1981, pp. 4-16   

[11] M. Shaw, “Prospects for an engineering discipline 

of software,” IEEE Software, November 1990, 

pp.15-24  

[12] D. Nicola et al. "A grey-box approach to the 

functional testing of complex automatic train 

protection systems." Dependable Computing-

EDCC 5. Springer Berlin Heidelberg, 2005. 305-

317.  

[13] J. A. Whittaker, “What is Software Testing? And 

Why Is It So Hard?” IEEE Software, 2000, pp. 70-

79.  

[14] N. Jenkins, “A Software Testing Primer”, 2008, 

pp.3-15.   

[15] Luo, Lu, and Carnegie, "Software Testing 

Techniques Technology Maturation and Research 

Strategies’, Institute for Software Research 

International-Carnegie Mellon University, 

Pittsburgh, Technical Report, 2010.  

[16] M. S. Sharmila and E. Ramadevi. "Analysis of 

performance testing on web application." 

International Journal of Advanced Research in 

Computer and Communication Engineering, 

2014.  

[17] S. Sampath and R. Bryce, Improving the 

effectiveness of Test Suite Reduction for User-

Session-Based Testing of Web Applications, 

Elsevier Information and Software Technology 

Journal, 2012.  

[18] B. Pedersen and S. Manchester, Test Suite 

Prioritization by Cost based Combinatorial 

Interaction Coverage International Journal of 

Systems Assurance Engineering and 

Management, SPRINGER, 2011.  

[19] S. Sprenkle et al., "Applying Concept Analysis to 

User-session based Testing of Web 

Applications", IEEE Transactions on Software 

Engineering, Vol. 33, No. 10, 2007, pp. 643 - 658  

[20] C. Michael, “Generating software test data by 

evolution, Software Engineering”, IEEE 

Transaction, Volume: 27, 2001.  

[21] A. Memon, “A Uniform Representation of Hybrid 

Criteria for Regression Testing”, Transactions on 

Software Engineering (TSE), 2013.  

[22] R. W. Miller, “Acceptance testing”, 2001, Data 

retrieved from 

(http://www.dsc.ufcg.edu.br/~jacques/cursos/ma

p/recursos/Testin g05.pdf)  

[23] Infosys, “Metric model”, white paper, 2012. Data 

retrieved from (http://www.infosys.com/ 

engineering -services /whitepapers/Documents 

/comprehensive-metrics-model.pdf)  

[24] B. Boehm, “Some Future Trends and Implications 

for Systems and Software Engineering 

Processes”, 2005, pp.1-11.   

[25] R. Bryce, “Test Suite Prioritisation and Reduction 

by Combinational based Criteria”, IEEE 

Computer Society”, 2014, pp.21-22.   

[26] M. I. Babar, “Software Quality Enhancement for 

value-based systems through Stakeholders 

Quantification”, 2005, pp.359-360. Data retrieved 

from(http://www.jatit.org/volumes/Vol55No3/10

Vol55No3.pdf)  

[27] R. Ramler, S. Biffl, and P. Grünbacher, "Value-

based management of software testing," in Value-

Based Software Engineering. Springer Science 

Business Media, 2006, pp. 225– 244.   

[28] D. Graham, "Requirements and testing: Seven 

missing-link myths," Software, IEEE, vol. 19, 

2002, pp. 15-17 

 


