
© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 71

Load Pattern Identifier (LoPI) For Scaling Size and

Pattern of the Workload for Setting Threshold Values

Dynamically in Cloud Environment

Pooja Kumari Jha1, Dr Deepika Pathak2

1Research Scholar, APJ Abdul Kalam University, Indore
2Research Supervisor, APJ Abdul Kalam university Indore

Abstract - As internet applications such as social

networks, streaming networking, diverse online groups

and smartphone apps are continuously increasing,

website consumer traffic is extremely complex, and

sometimes unpredictable. Accessible in both regions,

with Pay-as-you-go frameworks, cloud storage platforms

as self-service on request. The auto-scaling method must

be used by service providers to maximize scalability,

usage of resources and the providers to scale the

resources according to the consumers. Dynamic

threshold technology aims to optimize the activity and

expense of physical servers. Efficient allocation of capital

will further reduce the cost of operation. In addition to

the physical server, threshold values may be set on a

virtual machine. It cannot be always the same load or

workload. The Load Pattern Identifier (LoPI) is used for

finding the load pattern. In contrast with interpolation,

extrapolation, and correlation examination, the demand

for real time and the expected workload. The control

motor is used for LoPI analysis and rule generation.

Finally, the complex threshold for cloud services is set to

auto-scale.

Index Terms - Cloud, Threshold, Auto-scaling, Load,

Rate.

I.INTRODUCTION

The demand for applications will shift over time and

users can also host multiple applications (which have

different resource demands) on VM. Fixed VM size

can in these situations result in wasted resources or

deterioration of the application efficiency. This can be

solved by scaling the VM dynamically to the

specifications of the host program. The usage of VM

resource is controlled under threshold-based

automated scale. If the threshold values are surpassed,

the VM capacity will be increased or dynamically

reduced, as required sans shutdown of VMs that

mitigate the waste of resources. Figure 1 offers a high-

level device description.

The following components are given by the

Autoscaling Framework.

Monitor

The Monitoring Part tracks VMs, reads the usage of

Processor and Memory and transmits this knowledge

to Decision Maker. Xen APIs are used to get the use

of VM's CPU and Memory. It sends the Processor and

memory use requests of VMs via Xen APIs to the

XCP. It controls all active VMs by design, or only

unique VMs may be controlled in config. properties by

configuring the required values. In the config.

properties you will customize the time period to give

the report to XCP for VM statistics. The Monitor

module begins by reading all configuration properties

from the settings. The properties and shows the VMs

according to the values set in config.

Decision Maker

The Decision Maker Module collects the control

module's VM statistics and also reads the config

threshold values. “The properties file correlates with

statistics on VM and determines whether a VM can be

scale up/down and transmits this decision to the

configuration module of VM. The information that is

sent to the VM configuration module includes the

scalable VM ID, whether RAM or Processor scaling is

necessary, and how much scaling is to occur. The

configurations in the config. Properties file with both

thresholds and scaling values (helping in making

choices on how much scaling is expected to happen).

The usage of the VM Processor and RAM can surpass

the threshold for a few seconds and return to normal

values once more. If this is obtained by the monitor

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 72

module, the RAM/CPU in the VM is triggered

up/down. Once again, this cause is down/up scaling

the RAM/CPU in VM, which contributes to an

excessive up/down scaling of VMs, refers to the next

iteration monitor module. In order to prevent this, we

have implemented CPU iteration (min and max) and

memory iteration as configurable properties (min and

max).

The CPU iteration and memory iteration may be set to

any positive integer value from 0 to n. In case of down-

scaling, a max memory iteration and max CPU

iteration in case of upscaling, are used, which are

separate from each other. Decision maker only begins

up/downscaling if the RAM and Processor

consumption of a VM in the subsequent iterations

(min and max) and a memory iteration crosses the

threshold values (min and max).

Benefits of Auto-Scaling:

• Improved tolerance for a failure: Auto Scaling can

identify, end and start an instance to substitute an

instance that is not safe.

• Improved disponibility: Auto Scaling may be

programmed to utilize many Availability Areas.

Auto Scaling will start instances to balance if one

Availability Zone becomes inaccessible.

• Better cost management: Auto Scaling will

increase and reduce power, dynamically when

required, compensate for the usage of EC2

instances, save money when starting instances are

currently required, and avoid them when

unnecessary.

II. RELATED WORK

Rudrabhatla, Chaitanya. (2020) [1] The de facto

standard of microservice architecture (MSA) is now

being built for complex web applications. The

expanded adoption of this design is driven by

horizontal scalability, domain shielding, mobility, and

the provision of heterogeneous technologies. There

have been a number of developments in the fields of

cloud, containerization and orchestrating mechanisms,

which lead to automatically scaling micro-services, in

order to handle the various load patterns

automatically. However, it is an unpleasant job for

broad systems to set up scaling policies, maximal

higher and lower thresholds. In general, it requires

initial guessing and several tuning rounds dependent

on adjustments in real-time load. In this phase, the

service becomes inaccessible when the limits are on

the lower side of the device and (or) the computer is

not being utilized on the higher side. This paper

attempts to deduce the statistical formulae for the

quantitative calculation of thresholds and policy

measures. To overcome this formidable dilemma, we

are proposing a model in which a container operating

on the high-level load scenario can be computed for its

maximum resource consumption by first defining the

essential transactions, and then measuring the resource

consumption of the transactions in a managed

environment (1). The optimum upper threshold value

of the step-up functions may be determined with the

overall resourced utilization value and take account of

the network and start-up latencies. The upper

threshold values were determined using the above

method in this paper and a testing project checked that

in reality the calculated value is the required number

of containers to accommodate the load.

Iqbal et al., (2019) [2] Due to hardware heterogeneity,

resource disputes among co-located VMs and

overhead virtualization, the output of same category of

Cloud services, such as Virtual Machines, is variable

over time. The output shift may be significant, which

creates challenges in learning policies on workload

resource provision to scale cloud-hosted applications

automatically to sustain the required response time.

Additionally, the usage of limited resources to auto

scale multi-tier applications is much more demanding

since bottlenecks are often present at many stages. In

this paper we discuss the issue that output differing

VMs are used to automatically scale a Multi-Level

program with limited resources to control increasing

workloads dynamically and to fulfill the response time

requirements. In order to classify suitable services

accessible for multilevel implementation, the

framework suggested uses a supervised learning

framework focused on the application response time

estimates and the request arrival date.” A state

configuration map encodes a resource allotment states

invariant to underpinning VMs output variations is

given by the supervised learning process. “This chart

can be used for the predictive autoscaling process with

output varying tools. Our experimental assessment

utilizing a multi-level, real-world public-cloud web

framework demonstrates greater application

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 73

efficiency with limited resources relative to traditional

auto-scaling predictive approaches.

Iqbal et al., (2018) [3] According to present and

potential load forecasts, constructive self-scaling

approaches actively control device capital to maintain

desirable output at a lower expense. Self-scaling web

apps remain difficult, though, primarily because of

dynamic working load strength and hard to anticipate

functionality. Most current methods forecast mainly

the arrival rate of a request which only partially

represents the working load and evolving device

dynamics that impact resource needs. This may

contribute to insufficient decisions on resource

provision. In this article, we overcome these problems

by proposing the following method to predict complex

operating load trends. Next, we use an unmonitored

learning approach to evaluate access logs of the

applications to discover URIs dependent on reaction

time and document size characteristics. In order then

to reliably capture the working characteristics relative

to the workload by using the request arrival scale, we

compute the distribution of each URI app across these

partitions based on historical access logs. These URI

distributions can then be used to compute PWP, a

probability vector that represents the total distribution

of incoming requests across URI partitions.” These

distributions are often used to compute PWP. Finally,

the workload trends are used to estimate the workload

trend for the next interval for a given amount of last

interval intervals. “The above is used to forecast

resource demand in future and to proactively

autonomize resource supply dynamically. Increased,

declining, periodic, and spontaneously changing

arrival rate activities are introduced and analyzed in

the sense of historical access logs of three genuine web

applications. The findings indicate that the suggested

solution makes far more precise forecasts of web

applications' workload dynamics and resource needs

in contrast to the current approaches.

Taherizadeh, Salman & Stankovski, Vlado (2018) [4]

Cloud systems focused on containers need

sophisticated auto-scaling methods to run under

varying operating conditions. The choice of a self-

scaling approach will have a major impact on essential

metrics of service efficiency such as response time and

the usage of capital. Current container orchestration

schemes such as Kubernet and cloud-based providers

such as Amazon EC2 use static threshold self-scaling

rules that depend primarily on infrastructure-related

tracking details, including CPUs and memory

consumption. This report introduces a modern

dynamic multi-level (DM) self-scaling approach that

utilizes both infrastructure and application-level

monitoring knowledge, with dynamically changing

thresholds. In separate synthetic and real-world

workload environments the latest approach is

equivalent to seven current autoscaling approaches.

The eight auto-scaling approaches are compared based

on experimental findings according to the reaction

time and amount of containers instantiated. The

findings indicate that the DM approach suggested is

stronger overall than other automatic scaling

approaches with a range of operating loads. The

proposed DM approach is deployed for time-critical

cloud applications in SWITCH's information

technology environment, due to satisfactory

performance.

Rupal Gohel & Gaytri Pandi (2016) [5] Cloud storage

is a technique that provides the massive data centers

with services. Cloud storage is offered to consumers

as a commodity. The renowned service providers are

Rack Space, Salesforce, Amazon, Google, IBM, Dell,

and HP. As you pass, there is a wage. Scalability, the

usage of resources and the auto-scaling process must

be enhanced for service providers in order to scale the

resources as required by the customers. In this paper

we establish a law and find the complex threshold

value for quickly minimizing the usage of resources

and performance.

Ghobaei-Arani et al., (2015) [6] The number of

customers and service providers utilizing cloud

platforms has grown in recent years, making it quite

important for all sides to render the requisite tools

available and to handle them efficiently, regardless of

time and location. The self-scaling of the frameworks

would boost the efficiency and usage of cloud systems

since certain methods to automotive scaling have been

suggested. This paper aims to test the scalability of

web apps focused on learning automates, which

incorporate virtual clusters and learning automatons

such that the only possible approach is to scale up and

down virtual machines. This paper is also available in

German. The findings of this study show how

increased virtual machine capability by the thresholds

could impact SLA and response overhead.

Murthy M K et al., (2014) [7] Cost efficiency is one of

the factors of Cloud success. Efficient usage of energy

can further minimize expenses and excess resources

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 74

can be minimized. Based on various variables (for

example, loading the program), a VM consumer will

run multiple application styles (from MS Word to

complicated applications). The application criteria can

change over time. There is a strong risk of an

imbalance between VM and applicational

specifications in such cases when the VM instance

capability is defined. If the VM capacity is greater than

the application resource specifications, resource

would be lost, and the application output will be

degraded if the VM capacity was smaller than that

needed for application resources. To overcome these

problems, we suggest an auto scaling threshold on

virtual machines in which VMs are scaled dynamically

depending on the usage of device resources (CPU and

Memory). Efficient usage of capital may be done

through our strategy.

Lorido et al., (2014) [8] Applications may be

dynamically scaled by clients in cloud infrastructure

environments. The big challenge is how to rent, on a

pay-per-view basis, the correct amount of services. A

framework resize can be carried out seamlessly and

the resources allocated to the application can be

tailored to the incoming customer query. However,

deciding the correct amount of leasing capital to

satisfy the service level arrangement is not a simple

feat, thus retaining low cost overall. Several methods

for automating the scaling of software were suggested.

In five big categories: static threshold-based laws,

control theory, improving learning, queuing theory

and time series study, we recommend the

classification of certain techniques. This description is

then used to carry out an analysis of the literature on

cloud self-scaling proposals.

III.METHODOLOGY ADOPTED

User request from 1 to n coming to CSP, Load

balancer receives the request and looking for the

available resources. If the resources are available,

Load balancer sends the request to the resource pool to

provision the resources. The Load Pattern identifier

keeps on monitoring the workload to find out the

pattern and scaling size. Rule engine receives the

information from LoPI and generate the rule to add,

remove or manage with available resources with

dynamic threshold values. Finally, the resources are

provisioned to the user. Fig. 1. Describes the

methodology followed in this chapter.

Figure 1: Dynamic threshold-based Auto-scaling

methodology

IV. DYNAMICTHRESHOLDBASEDAUTO-

SCALING

All cloud resources are provided based on static

threshold values. Workload may be increasing

gradually or there must be some oscillations. Finding

out workload pattern and scaling size could set the

threshold values dynamically and optimally utilize the

resources. The dynamic threshold-based auto-scaling

approach using the load pattern identifier implied in

this paper is shown in Fig.2. It focuses to set the

threshold values dynamically according to the pattern

of the workload.

A. Request Pool (RP)

The cloud user requests come through the request

pool. The cloud user’s credentials and requests will be

stored in resource pool. It will categorize all the

requests and finally the requests forwarded to the load

balancer.

Figure2.DynamicThresholdBasedAuto-scaling

B. Load Balancer (LB)

Load balancing is a technique to enhance resources,

developing parallelism, exploiting throughput

invention and to reduce response time through the

appropriate distribution of the application. Load

balancer is to send the user request(or) workload to the

available cloud resources.

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 75

C. Load pattern identifier (LoPI)

Micro, mini, medium, massive and extra-large IaaS

cases. AWS five type instances include a general

function, optimized processing, optimized GPU,

optimized memory instances and optimized capacity.

Load pattern is considered the order of the load that

arrives to the request handler. The requests for light

weight are submitted in seconds or minutes and the

requests for heavy weight in minutes. CSP cannot

always wait for the same workload.” Serving in a

shorter time is not feasible unless it is constructive.

LoPI method is used to detect the load trend during

heavy workload. It records the cloud user order, and it

includes a time period for a number of CU queries.

LoPI detects the load conditions and activates the

motor control to keep the UC from waiting for the

service in line.

It tracks the load in a load balancer continuously. LoPI

shall find the amount of load balancer CU requests and

the number of requests handled at a certain time point.

“With reference to load factors, the trend tends to shift.

This divides the load into tiny, medium, big, and extra-

large load groups, identifies the CPU, and often tracks

memory and load conditions. Finally, the load state is

changed to the law motor.

1)Interpolation/Extrapolation: UK natural grid dataset

real-time data is considered for the demand. Set of

time series forecasting methods applied and the more

accurate with good fitness statistics method has

chosen. The forecasted demand and time have taken

for comparison with the present load pattern.

Lagrange’s polynomial Interpolation and

Extrapolation is applied to find out the under and over

provisioning.

𝑃(𝑥) =
(𝑥−𝑥2)(𝑥−𝑥3)…(𝑥−𝑥𝑁)

(𝑥1−𝑥2)(𝑥1−𝑥3)…(𝑥1−𝑥𝑁)
𝑦1 +

(𝑥−𝑥1)(𝑥−𝑥3)…(𝑥−𝑥𝑁)

(𝑥2−𝑥1)(𝑥2−𝑥3)…(𝑥2−𝑥𝑁)
𝑦2 + ⋯ +

(𝑥−𝑥1)(𝑥−𝑥2)…(𝑥−𝑥𝑁−1)

(𝑁−𝑥1)(𝑥𝑁−𝑥2)…(𝑥𝑁−𝑥𝑁−1)
𝑦𝑁(1)

TheinterpolatingpolynomialofdegreeN-1through the N

points y1=f(x1), y2=f(x2),….,yN=f(xN)is given

explicitly by Lagrange’s classical formula. There are

N terms, each a polynomial of degreeN-1and each

constructed to be zero at all of the xi, except one, at

which it is considered to be yi.

2)Correlation

Correlation, Partial Autocorrelation and

Autocorrelation test is applied to one day forecasted

demand and the load. The test results are showed in

the following figures. One day load and the forecasted

load is shown inFig.3.

Figure3.Load and Forecasted load

Pearson, Prearman and Kendall correlation test

summary of statistics are shown in Table 1,

Correlation matrix in Table2, p-values in Table3 and

Coefficient of determination in Table 4.

Table 1: Summary of statistics

Variable Observations Obs. with missing data Obs. without

missing data

Minimum Maximum Mean Std.

deviation

Kendall

Demand 48 0 48 307.000 681.000 505.458 118.654

Fourier 48 0 48 222.409 1002.334 590.791 277.822

Spearman

Demand 48 0 48 307.000 681.000 505.458 118.654

Fourier 48 0 48 222.409 1002.334 590.791 277.822

Pearson

Demand 48 0 48 307.000 681.000 505.458 118.654

Fourier 48 0 48 222.409 1002.334 590.791 277.822

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 76

Table 2: Correlate in Matrix

 Variables Demand Fourier

Kendall

Demand 1 0.859

Fourier 0.859 1

Spearman

Demand 1 0.956

Fourier 0.956 1

Pearson

Demand 1 0.945

Fourier 0.945 1

Table 3: P-values

 Variables Demand Fourier

Kendall

Demand 0 0.000

Fourier < 0.0001 0

Spearman

Demand 0 0.000

Fourier < 0.0001 0

Pearson

Demand 0 0.000

Fourier < 0.0001 0

Table 4: Coefficients of determination

 Variables Demand Fourier

Kendall Demand 1 0.739

Fourier 0.739 1

Spearman Demand 1 0.914

Fourier 0.914 1

Pearson Demand 1 0.893

Fourier 0.893 1

Fig.4. to Fig7. Shows the Partial and Autocorrelation

of demand and Fourier demand.

Figure4.AutocorrelationforDemandorload

Figure5.PartialAutocorrelationforDemand

Figure6.AutocorrelationforFourier

Figure 7. Partial Autocorrelation for Fourier

Table5 shows the Normality test and white noise tests

of Fourier and Demand.

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 77

Statistic DF Value p-value

Box-Pierce 6 30.523 <0.0001

Ljung-Box 6 35.410 <0.0001

McLeod-Li 6 295.686 <0.0001

Box-Pierce 12 185.625 <0.0001

Ljung-Box 12 239.565 <0.0001

McLeod-Li 12 442.520 <0.0001

Fig.8 shows the cross correlation of demand and

Fourier.

Figure8.Cross-correlations for Demand and Fourier

D. Scaling size

Workload consists of three types, CPU, Memory,

Storage and Network. CPU load is measured as

CPU= /N (2)

Where, n is the number of nodes, CPU utilization

represented as Ck. Memory load is measured as

M= MemUse/TMem (3)

Where, memory load consists of memory used and

total memory. Storage load measured as

 (4)

Where, storage (ST) load consists of storage used and

the total storage. Network load measured as

 (5)

Where, network (NT) load consists of network used

and the total network.

E. Rule engine (RE)

The operation of the control motors is to obtain

updated LoPI data and to produce a dynamic law. The

rule engine decides to handle the workload until the

new VM is complete, in compliance with the LoPI

route. The higher threshold level is 80%, the lower

limit is 20% and the threshold amount of the indication

is 70% and 30%. If a request exceeds 70%, the

medium threshold value is 50%, and a procedure is

implemented to decide how the requests will be

treated. If the tools available are enough, the workload

is handled. Using the dynamic rule to maximize capital

if the threshold value reaches 70 per cent.” When the

threshold value exceeds 80%, add resources to

eliminate underutilized capital as requested below the

level of 20%. “Set adjustable threshold values to

match the applications with available resources when

the workload is a little higher than the resources

available. In the interim, the money required would be

guided and stored.

Auto-scaling system operates when the dynamic law

is triggered by the rule motor. Auto-scaling is used for

inserting and removing scale tools.

F. Rule Database (RD)

The generated rule is stored in rule database for future

reference. The generation of rule for the similar dataset

for future is time consuming, to avoid delay in the rule

generation process the rule are stored in the RD.

V. CONCLUSION

Self-scaling is a big cloud computing problem. Auto-

scaling allowed us to know the existing process and

the auto-scaling techniques. Auto-scaling centered

mostly on lowering prices, saving time, high

efficiency, and fast job results. The cloud system's

self-scaling process is the key factor of utilizing

services, reducing, or eliminating the expense of

storage and administration. The dynamic threshold

dependent self-scaling with the load pattern identifier

(LoPI) is suggested to prevent issues with the static

threshold.” The analysis we will carry out in the future

is to verify the approach suggested for a broad amount.

REFERENCE

[1] Rudrabhatla, Chaitanya. (2020). A Quantitative

Approach for Estimating the Scaling Thresholds

and Step Policies in a Distributed Microservice

Architecture. IEEE Access. 8. 180246 - 180254.

10.1109/ACCESS.2020.3028310.

[2] Iqbal, Waheed & Erradi, Abdelkarim & Abdullah,

Muhammad & Mahmood, Arif. (2019). Predictive

Auto-scaling of Multi-tier Applications Using

Performance Varying Cloud Resources. IEEE

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 78

Transactions on Cloud Computing. PP.

10.1109/TCC.2019.2944364.

[3] Iqbal, Waheed & Erradi, Abdelkarim &

Mahmood, Arif. (2018). Dynamic Workload

Patterns Prediction for Proactive Auto-scaling of

Web Applications. Journal of Network and

Computer Applications.10.1016/j.jnca.2018.09.0

23.

[4] Taherizadeh, Salman & Stankovski, Vlado.

(2018). Dynamic Multi-level Auto-scaling Rules

for Containerized Applications. The Computer

Journal. 62. 10.1093/comjnl/bxy043.

[5] Rupal Gohel & Gaytri Pandi (2016) “Enhance

Load Balancer Behavior Identifier for Dynamic

Auto-Scaling in Cloud” IJARIIE, Vol-2 Issue-3

2016M PP-1191-1198.

[6] Ghobaei-Arani, Mostafa & Fallah, Monireh.

(2015). ASTAW: Auto-Scaling Threshold-based

Approach for Web Application in Cloud

Computing Environment. International Journal of

u- and e- Service, Science and Technology

(IJUNESST).8.221-230.10.14257/ijunesst.2015.

8. 3.21.

[7] Murthy M K, Mohan & Sanjay, H. & Jumnal,

Anand. (2014). Threshold Based Auto Scaling of

Virtual Machines in Cloud Environment.

10.1007/978-3-662-44917-2_21.

[8] Lorido-Botrán, Tania & Miguel-Alonso, Jose &

Lozano, Jose. (2014). A Review of Auto-scaling

Techniques for Elastic Applications in Cloud

Environments. Journal of Grid Computing. 12.

10.1007/s10723-014-9314-7.

[9] M.Kriushanth, Dr.L. Arockiam ―Load Balancer

Behavior Identifier for Dynamic Threshold Based

Auto-Scaling in cloud‖ Research Scholar in

computer Science, St.Joseph’s College,

Tiruchirappalli, Tamil Nadu, India, 2015 ICCCI,

978-1-4799-6805-3/15,pp 150-156

